Emergency War Surgery
Hero’s Highway shuts down. Airmen from the 332nd Expeditionary Medical Group carry a stretcher under the Hero’s Highway flag during an aeromedical evacuation training exercise. The historical flag was recently cased in a ceremony on September 1, 2011.

Photograph: US Air Force photo no. 110707-F-GU448-007.
Photographer: Senior Airman Jeffrey Schultze.
Emergency War Surgery

FOURTH UNITED STATES REVISION

2013

Borden Institute

US Army Medical Department Center and School

Fort Sam Houston, Texas

Office of The Surgeon General

United States Army

Falls Church, Virginia
“All the circumstances of war surgery thus do violence to civilian concepts of traumatic surgery. The equality of organizational and professional management is the first basic difference. The second is the time lag introduced by the military necessity of evacuation. The third is the necessity for constant movement of the wounded man, and the fourth—treatment by a number of different surgeons at different places instead of by a single surgeon in one place—is inherent in the third. These are all undesirable factors, and on the surface they seem to militate against good surgical care. Indeed, when the overall circumstances of warfare are added to them, they appear to make more ideal surgical treatment impossible. Yet this was not true in the war we have just finished fighting, nor need it ever be true. Short cuts and measures of expediency are frequently necessary in military surgery, but compromises with surgical adequacy are not.”

—Michael E. DeBakey, MD

Presented at Massachusetts General Hospital
Boston, October 1946
THE FOURTH UNITED STATES REVISION

of

EMERGENCY WAR SURGERY

IS DEDICATED TO THE

COMBAT PHYSICIAN
Dosage Selection:
The authors and publisher have made every effort to ensure the accuracy of dosages cited herein. However, it is the responsibility of every practitioner to consult appropriate information sources to ascertain correct dosages for each clinical situation, especially for new or unfamiliar drugs and procedures. The authors, editors, publisher, and the Department of Defense cannot be held responsible for any errors found in this book.

Use of Trade or Brand Names:
Use of trade or brand names in this publication is for illustrative purposes only and does not imply endorsement by the Department of Defense.

Neutral Language:
Unless this publication states otherwise, masculine nouns and pronouns do not refer exclusively to men.

The opinions or assertions contained herein are the personal views of the authors and are not to be construed as doctrine of the Department of the Army or the Department of Defense. For comments or suggestions on additional contents in forthcoming editions, please contact the publisher (www.cs.amedd.army.mil/borden).

CERTAIN PARTS OF THIS PUBLICATION PERTAIN TO COPYRIGHT RESTRICTIONS. ALL RIGHTS RESERVED.

NO COPYRIGHTED PARTS OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL (INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM), WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER OR COPYRIGHT OWNER.

Published by the Office of The Surgeon General
Borden Institute
Fort Sam Houston, Texas 78234-6100

Library of Congress Cataloging-in-Publication Data
Emergency war surgery (Borden Institute)
 Emergency war surgery. — Fourth United States revision.
 p. ; cm.
 Includes bibliographical references and index.
 I. Borden Institute (U.S.), editor of compilation. II. Title.
Contents

COPYRIGHT
EDITORIAL BOARD
CONTRIBUTORS
ACKNOWLEDGMENTS
FOREWORD
PREFACE
PROLOGUE

Chapter 1: Weapons Effects and War Wounds
Chapter 2: Roles of Medical Care (United States)
Chapter 3: Mass Casualty and Triage
Chapter 4: Aeromedical Evacuation
Chapter 5: Airway/Breathing
Chapter 6: Hemorrhage Control
Chapter 7: Shock, Resuscitation, and Vascular Access
Chapter 8: Anesthesia
Chapter 9: Soft-Tissue and Open Joint Injuries
Chapter 10: Infections
Chapter 11: Critical Care
Chapter 12: Damage Control Surgery
Chapter 13: Face and Neck Injuries
Chapter 14: Ocular Injuries
Chapter 15: Head Injuries
Chapter 16: Thoracic Injuries
Chapter 17: Abdominal Injuries
Chapter 18: Genitourinary Tract Injuries
Chapter 19: Gynecological Trauma and Emergencies
Chapter 20: Wounds and Injuries of the Spinal Column and Cord
Chapter 21: Pelvic Injuries
Chapter 22: Extremity Fractures
Editorial Board

Chair/Senior Medical Editor

Miguel A. Cubano, MD, FACS
CAPT, MC, US Navy
Deputy Commander
Defense Medical Readiness Training Institute
Fort Sam Houston, Texas

Executive Medical Editor

Martha K. Lenhart, MD, PhD, FAAOS
COL, MC, US Army

Medical Co-Editors

Jeffrey A. Bailey, COL, MC, US Air Force
George P. Costanzo, COL, MC, US Air Force
Brian J. Eastridge, COL, MC, US Army
James R. Ficke, COL, MC, US Army
Christopher M. Hults, CDR, MC, US Navy
Zsolt T. Stockinger, CAPT, MC, US Navy

Borden Institute Editorial Staff

Daniel E. Banks, MD, MS, MACP
LTC, MC, US Army
Director and Editor in Chief

Timothy K. Jones, DDS
COL (Ret), DC, US Army
Assistant Director

Vivian Mason
Volume Editor

Douglas Wise
Layout Editor

Bruce Maston
Illustrator
Contributors

Romney Anderson, COL, MC, US Army
Jayson Aydelotte, MAJ, MC, US Army
Martin Baechler, COL, MC, US Army
Jeffrey A. Bailey, COL, MC, US Air Force
Linda Beltra, CAPT, MC, US Navy
John R. Benjamin, CDR, MC, US Navy
Terence G. Benson, MAJ, BSC, US Air Force
Alan Berg, COL, MC, US Air Force
Ian H. Black, MAJ, MC, US Army Reserves
Sharon Blondeau, CAPT, NC, US Navy
Harold R. Bohman, CAPT (Ret), MC, US Navy
Mark E. Boston, COL, MC, US Air Force
Mark W. Bowyer, COL (Ret), MC, US Air Force
Chester Buckenmaier III, COL, MC, US Army
Frank Butler, CAPT, MC, US Army
Ramon F. Cestero, CDR, MC, US Navy
Michael Charlton, LT COL, MC, US Air Force
George P. Costanzo, COL, MC, US Air Force
Tracy Cotner-Pouncy, RN
James E. Cox, COL (Ret), MC, US Air Force
Miguel A. Cubano, CAPT, MC, US Navy
Virgil Deal, COL, MC, US Army
Sherrilee A. Demmer, RN, BSN
David Dromsky, CDR, MC, US Navy
James Dunne, CAPT, MC, US Navy
Brian J. Eastridge, COL, MC, US Army
Mary Edwards, LTC, MC, US Army
James R. Ficke, COL, MC, US Army
Stephen Flaherty, COL, MC, US Army
Richard Gonzales, COL, MSC, US Army
Kurt Grathwohl, COL, MC, US Army
Steven Hadley, COL, MC, US Air Force
Dan R. Hansen, COL, MC, US Army
Kenneth C. Harris, COL, MC, US Army
Scott Helmers, CAPT, MC, US Navy
Linda Hill, LCDR (Ret), MSC, US Navy
Christopher M. Hults, CDR, MC, US Navy
Joel Jenne, LT COL, MC, US Air Force
Jefferson Jex, MAJ, MC, US Army
Jason Johnson, MAJ, MC, US Army
Timothy K. Jones, COL (Ret), DC, US Army
John Keeling, CDR, MC, US Navy
James Keeney, LT COL, MC, US Air Force
Jess Kirby, MAJ, MC, US Army
Kevin Kirk, LTC, MC, US Army
Eric Kuncir, CAPT, MC, US Navy
Julio Lairet, MAJ, MC, US Air Force
Ronald A. Lehman, LTC, MC, US Army
Martha K. Lenhart, COL, MC, US Army
Henry Lin, CDR, MC, US Navy
Mark A. MacDougall, LTC, AN, US Army
Patricia McKay, CAPT, MC, US Navy
Alan Murdock, LT COL, MC, US Air Force
Shawn Passons, LCDR, NC, US Navy
Jeremy Perkins, LTC, MC, US Army
Benjamin Potter, MAJ, MC, US Army
Joseph Rappold, CAPT, MC, US Navy
Todd Rasmussen, LT COL, MC, US Air Force
Francisco Rentas, COL, MC, US Army
Evan Renz, COL, MC, US Army
Mark Richardson, COL, MC, US Air Force
Keyan Riley, MAJ, MC, US Air Force
John R. Rotruck, CDR, MC, US Navy
Zsolt T. Stockinger, CAPT, MC, US Navy
Joseph Strauss, CDR, MC, US Navy
Daniel Unger, CAPT, MC, US Navy
Teun van Egmond, COL, MC, Royal Netherlands Army
Glenn Wortmann, COL (Ret), MC, US Army

Illustration Contributors

E. Weissbial
Joint Trauma System
SonoSite, Inc

Illustrators

Bruce Maston
Jessica Shull
Douglas Wise

2004 Contributors

We also pay tribute to the contributors of the 2004 Edition of
Emergency War Surgery:

Editors

Ronald F. Bellamy, COL (Ret), MC, US Army
Matthew Brengman, MAJ, MC, US Army
David G. Burris, COL, MC, US Army
Paul J. Dougherty, LTC, MC, US Army
David C. Elliot, COL, MC, US Army
Joseph B. FitzHarris, COL, MC, US Army
Stephen P. Hetz, COL, MC, US Army
John B. Holcomb, COL, MC, US Army
Donald H. Jenkins, LTC, MC, US Air Force
Christoph Kaufmann, LTC, MC, US Army
Dave Ed. Lounsbury, COL, MC, US Army
Peter Muskat, COL, MC, US Air Force
Lawrence H. Roberts, CAPT, MC, US Navy

Contributors
Keith Albertson, COL, MC, US Army
Rocco A. Armonda, LTC, MC, US Army
Kenneth S. Azarow, LTC, MC, US Army
Ronald F. Bellamy, COL (Ret), MC, US Army
Matthew Brengman, MAJ, MC, US Army
David G. Burris, COL, MC, US Army
Frank Butler, CAPT, US Navy
Mark D. Calkins, MAJ, MC, US Army
Leopoldo C. Cancio, LTC, MC, US Army
David B. Carmacke, MAJ, MC, FS, US Air Force
Maren Chan, CPT, US Army
David J. Cohen, COL, MC, US Army
Jan A. Combs, MAJ, MC, US Army
Paul R. Cordts, COL, MC, US Army
Nicholas J. Cusolito, MAJ, NC, US Air Force
Daniel J. Donovan, LTC, MC, US Army
Paul J. Dougherty, LTC, MC, US Army
David C. Elliot, COL, MC, US Army
Martin L. Fackler, COL (Ret), MC, US Army
John J. Faillace, MAJ, MC, US Army
Gerald L. Farber, LTC, MC, US Army
Joseph B. FitzHarris, COL, MC, US Army
Stephen F. Flaherty, LTC, MC, US Army
Roman A. Hayda, LTC, MC, US Army
John B. Holcomb, COL, MC, US Army
Michael R. Holtel, CAPT, MC, US Navy
Stephen P. Hetz, COL, MC, US Army
Jeffrey Hrutkay, COL, MC, US Army
Annesley Jaffin, COL, MC, US Army
Donald H. Jenkins, LTC, MC, US Air Force
James Jezior, LTC, MC, US Army
Christoph Kaufmann, LTC, MC, US Army
Kimberly L. Kesling, LTC, MC, US Army
Thomas E. Knuth, COL, MC, US Army
Wilma I. Larsen, LTC, MC, US Army
George S. Lavenson, Jr, COL (Ret), MC, US Army
James J. Leech, COL, MC, US Army
Dave Ed. Lounsbury, COL, MC, US Army
Christian Macedonia, LTC, MC, US Army
Craig Manifold, MAJ, MC, US Air Force
Patrick Melder, MAJ, MC, US Army
Alan L. Moloff, COL, MC, US Army
Allen F. Morey, LTC, MC, US Army
Peter Muskat, COL, MC, US Air Force
Mary F. Parker, LTC, MC, US Army
George Peoples, LTC, MC, US Army
Karen M. Phillips, LTC, DC, US Army
Ronald J. Place, LTC, MC, US Army
Paul Reynolds, COL, MC, US Army
Lawrence H. Roberts, CAPT, MC, US Navy
David Salas, Msgt (Ret), US Air Force
Joseph C. Sniezek, MAJ, MC, US Army
Scott R. Steele, CPT, MC, US Army
Allen B. Thach, COL, MC, US Army
Reserve Johnny S. Tilman, COL, MC, US Army
John M. Uhorchak, COL, MC, US Army
Steven Venticinque, MAJ, MC, US Air Force
Ian Wedmore, LTC, MC, US Army

Additional Contributors

Chester Buckenmaier, LTC, MC, US Army
Eskil Dalerius, COL, Swedish Armed Forces
Michael Deaton, COL, MC, US Army
William Dickerson, COL, US Air Force
Peter Rhee, LTC, MC, US Army
Glenn Wortmann, LTC, MC, US Army

Illustrators

Bruce Maston
Jessica Shull
Acknowledgments

Special acknowledgment to CAPT W. R. Dalton, Commander of the Defense Medical Readiness Training Institute, for his leadership and oversight during this revision of *Emergency War Surgery*.

The information contained in this book reflects a generous collaborative effort. Thank you to all of the contributors and content reviewers for their valuable time and contributions.

Thanks to Donalda (Dee) Smith whose efforts and selfless service were unprecedented. Dee deserves special recognition for persevering and committing more than 3 years to getting this book organized, connecting doctors with chapters, and providing untiring service to see it to its completion. She was the driving force behind this book and spent countless hours making phone calls, sending multitudinous e-mails, and communicating with doctors all over the country and OCONUS. Without her, this book would not have been possible.

Tremendous gratitude to Colonel Martha Lenhart of the Borden Institute who was instrumental in ensuring that this book was a priority, and who selflessly provided guidance and encouragement during all stages of its production. We would also like to express our sincere thanks to Vivian Mason, Volume Editor, Borden Institute, for her dedication and technical support.

Miguel A. Cubano, MD, FACS
Captain, MC, US Navy
Deputy Commander
Defense Medical Readiness Training Institute
Foreword

It is an honor for me to acknowledge the time, efforts, and experience collected in this fourth revision of *Emergency War Surgery.* Once again, a team of volunteers representing the Military Health System and numerous clinical specialties has committed itself to compiling state-of-the-art principles and practices of forward trauma surgery.

War surgery and treatment of combat casualties at far-forward locations, frequently under austere conditions, continue to save lives. Military medical personnel provide outstanding health support to those who serve in harm’s way. As war has evolved, so has our medical support to those who fight. Today, American service members face a new terrain of mobile urban conflict. Despite advances in personal and force protection, our forces remain vulnerable to blast wounds, burns, and multiple penetrating injuries not usually encountered in civilian settings. This publication expertly addresses the appropriate medical management of these and other battle and nonbattle injuries.

I congratulate contributors to this edition for drawing on the experiences of colleagues who recently returned from tours of duty in Southwest Asia to provide the most current handbook. I wish to publicly extend my gratitude, and that of the American people, to the courageous men and women who serve in the medical departments of our armed services. I commend your dedicated service and acknowledge your sacrifices, and those of your families, to provide the best healthcare to those who protect our nation. All Americans are indebted to your service.

Jonathan Woodson, MD
Assistant Secretary of Defense for Health Affairs
Director of TRICARE Management Activity

May 2012
Washington, DC
Preface

The moral test of a nation’s character is how its citizens care for those who are ill or injured as a consequence of war. This edition of the *Emergency War Surgery* manual (the 4th revision) exemplifies the continuing commitment of military healthcare providers to Soldier well-being across the continuum of care from remote battlefields to stateside evacuation. This resource epitomizes shared knowledge from healthcare providers dedicated to the delivery of lifesaving care, which underpins our honored legacy of military medicine. The authors have documented our providers’ intellectual commitment and unwavering ability to advance the practice of medicine under arduous combat conditions. The battlefield experience has always informed medicine. The increased experience of combat and innovation resulting from the last decade of war will forever be etched within the pages of this manual, not as a monument for posterity, but as a practical handbook to enhance the working medical knowledge and skills of our fighting force.

It is said that the Greek god of medicine, Asclepius, was born as a result of an emergency medical intervention. Heroic acts of courage by Soldiers, Sailors, Airmen, and Marines are a testament to our nation’s ability to overcome adversity even in the face of mortal challenge. As enemy tactics in Iraq and Afghanistan evolved, with increased application of improvised and vehicle-borne explosive devices, medical leaders at all levels questioned existing paradigms and conventional wisdom. They developed evidence-based Clinical Practice Guidelines, changed or augmented existing treatment modalities, and spearheaded progressive alterations to ballistic survival gear. From the application of tourniquets at the point of injury to the design and development of prosthetics during the rehabilitative phase of treatment, our medical teams continue to conduct new research and challenge medical dogma to solve current problems.

Emergency War Surgery is a testament to the courage exhibited by our military men and women in these difficult times. This manual represents the collective efforts of numerous military scholars and pays homage to those who willingly paid the ultimate price of freedom. Each word should be read in their honor.

With honor, humility, and profound admiration, we present the 4th edition of the *Emergency War Surgery* manual with the express hope that we will not forget the lessons we have learned.

Patricia D. Horoho
Lieutenant General, US Army
Surgeon General
April 2013
Washington, DC
Prologue

“War is the only proper school for the surgeon.”

— Hippocrates

Within the last century, our wars have traveled from the hedgerows of Europe and beaches in the Pacific, to the jungles of Vietnam, and now to the deserts and mountains of Southwest Asia. The common denominator of these conflicts is intense human suffering and death as a result of injury on the battlefield. Most recently, after a decade of war, what is recent past is prologue for this work: more than 5,000 dead and tens of thousands of combat casualties with significant injury in the decade from 2001 to 2011. Per the philosophy of Hippocrates, “What have we learned?” and, more importantly, how can we pass that knowledge along to those who will follow? As the concept of modern warfare has changed, so, too, has medical care evolved on the battlefield. The current contingency operations have produced medical advances that will be our legacy and the new foundations for the military surgeons of the future.

War surgery today is about using evidence and best practice to optimize care of our wounded warriors. Although grounded in the fundamental training of the general surgeon and surgical specialist, it must be adaptive to the challenges of extremely high injury acuity, the burden of overwhelming casualty numbers, long and unforgiving hours, environmental extremes, logistical austerity, and the reality that mission accomplishment may precede medical necessity. It is a concept built on realistic experience and lessons learned over a decade of continuous conflict. War has predictably proliferated innovations in medicine and surgery. Modern technology and communication have yielded substantial impact on the battlefield, in that we are better able to use contemporary lessons learned to disseminate, educate, and change practice to mitigate casualty outcomes in relatively “real time.”

Advances in combat casualty care are associated with the lowest case fatality rate in the history of warfare, a fact rendered even more remarkable by the complexity of injury and expedited transcontinental evacuation of casualties across the globe. Within this realm of medical innovation, one of the most important contemporary advances to military medicine on the battlefield has been the development and implementation of the Joint Trauma System, a system whose singular vision is that every soldier, Marine, sailor, or airman injured on the battlefield or in the theater of operations has the optimal chance for survival and maximal potential for functional recovery. The motto of the system is “Right Patient, Right Time, Right Place, Right Care.” The trauma system is built on the infrastructure of the Department of Defense Trauma Registry (DoDTR), in that data improve medical
care; that data drive doctrine, policy, and decision-making; and that data create new knowledge to further the evolution of battlefield care. Pertinent to the casualty and the surgeon, the mission of the Joint Trauma System is to improve trauma care delivery and patient outcomes across the continuum of care, utilizing continuous performance improvement and evidence-based medicine. Value of the trauma system is evidenced by development of more than 36 evidence-based battlefield relevant Clinical Practice Guidelines (CPGs) that have decreased morbidity and mortality from combat injury. Relevant CPGs are cited extensively in this version of Emergency War Surgery.

Furthermore, the antiquated system of prehospital care espoused by Pre-Hospital Trauma Life Support (PHTLS) has been ubiquitously supplanted by the paradigm of Tactical Combat Casualty Care (TCCC), divided into phases depending on the tactical scenario. In each phase, the greatest potential threat to life is managed as a priority in the context of mission capability and mission completion. Embedded within the overarching concept of TCCC are hemorrhage control and airway management. Tourniquet utilization has become a fundamental pillar of hemostasis in TCCC and has been shown to be associated with an attributable survival advantage.

Developers of the technique of balanced resuscitation coined the term “damage control resuscitation.” It was conceptualized on this battlefield and has reduced the mortality rate of massive transfusion casualties from 40% to less than 20%. Further refinements of this resuscitation paradigm include the use of novel hemostatic agents, coagulopathy testing modalities, and even mobile resuscitative team strategies.

Even with all of the advances that have taken place on the battlefield in the last decade, several challenges loom on the horizon. Despite the lowest case fatality rate in history, the “died of wounds rate” remains largely unchanged. The vast majority of combat casualties die on the battlefield before ever reaching a medical treatment facility. Therefore, the greatest chance to impact combat casualty care occurs long before the surgeon ever has the opportunity to stop the bleeding. The charge to the generation of surgeons reading this text is to make this situation better.

It is the earnest hope of the authors of this Emergency War Surgery handbook that it will gather dust on the shelves of tomorrow’s military surgeon, knowing all too well that with predictable certainty that far too soon the “balloon will go up” and military surgeons will once again heed the call.

There is no greater calling, nor greater responsibility, nor greater sense of worth than to care for a wounded brother-in-arms.

Brian J. Eastridge, MD, FACS
Colonel, MC, US Army
Trauma Consultant, US Army Surgeon General
Miguel A. Cubano, MD, FACS
Captain, MC, US Navy
Deputy Commander
Defense Medical Readiness Training Institute

Jeffrey A. Bailey, MD, FACS
Colonel, MC, FS, US Air Force
Director, Joint Trauma System

May 2012
San Antonio, Texas
Chapter 1

Weapons Effects and War Wounds

Introduction

Just as with any medical topic, surgeons must understand the pathophysiology of war wounds to best care for the patient. The most important tenet follows:

TREAT THE WOUND, NOT THE WEAPON

Epidemiology of Injuries

- Primary weapons of war can be divided into explosive munitions and small arms.
 - **Explosive munitions:** Artillery, grenades, mortars, bombs, rockets, mines, improvised explosive devices, etc.
 - **Small arms:** Pistols, rifles, and machine guns.
- Three major epidemiological analyses have been conducted to evaluate the cause of battlefield injury, as well as outcome:
 - During the Bougainville campaign of World War II (Table 1-1), a medical team was sent to gather data on the injured, including the cause of injury. This campaign involved primarily infantry soldiers and was conducted on the South Pacific island of Bougainville during 1944.
 - US Army and Marine casualties from the Vietnam War were collected by the Wound Data and Munitions Effectiveness Team (WDMET) in Vietnam (Table 1-2).
 - The Joint Theater Trauma System (JTTS) was developed and implemented in 2004, modeling the success of civilian trauma systems in the United States. The JTTS was developed to support operations in Iraq and Afghanistan to ensure that every military casualty has the optimal chance for survival and maximal potential for functional recovery.

Table 1-1. US Casualties: Bougainville Campaign (World War II), Vietnam, and OEF/OIF

<table>
<thead>
<tr>
<th>Weapon</th>
<th>Bougainville (%)</th>
<th>Vietnam (%)</th>
<th>OEF/OIF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullet</td>
<td>33.3</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Mortar</td>
<td>38.8</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>
Artillery 10.9 3 <1
Grenade 12.5 11 —
Booby trap/IED 1.9 17 64

RPG — 12 3
Other 2.6 8 3

Table 1-2. Anatomical Distribution of Primary Penetrating Wounds

<table>
<thead>
<tr>
<th>Conflict</th>
<th>Head and Neck (%)</th>
<th>Thorax (%)</th>
<th>Abdomen (%)</th>
<th>Extremity (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World War I</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>World War II</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Korean War</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>Vietnam War</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>74</td>
<td>—</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Falkland Islands</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>59</td>
<td>—</td>
</tr>
<tr>
<td>Gulf War (UK)</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>71</td>
<td>—</td>
</tr>
<tr>
<td>Gulf War (US)</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>Chechnya</td>
<td>24</td>
<td>9</td>
<td>4</td>
<td>63</td>
<td>—</td>
</tr>
<tr>
<td>Somalia</td>
<td>20</td>
<td>8</td>
<td>5</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>OEF/OIF</td>
<td>27</td>
<td>5</td>
<td>6</td>
<td>55</td>
<td>7</td>
</tr>
</tbody>
</table>

OEF: Operation Enduring Freedom; OIF: Operation Iraqi Freedom.

The most common battlefield injury pattern is multiple fragment wounds involving multiple anatomical sites.
Mechanism of Injury (Fig. 1-1)

- Projectile injuries (Table 1-3).
 - There are two areas of projectile–tissue interaction: permanent cavity and temporary cavity (Fig. 1-2).

- **Permanent cavity**: Localized area of cell necrosis, proportional to the size of the projectile as it passes through.

- **Temporary cavity**: Transient lateral displacement of tissue, which occurs after passage of the projectile. Elastic tissue (e.g., skeletal muscle, blood vessels, and skin) may be pushed aside after passage of the projectile, but then rebound. Inelastic tissue (e.g., bone or liver) may fracture in this area.

- The shock (or sonic) wave (commonly mistaken for the temporary cavity), though measurable, has not been shown to cause damage in tissue.

Table 1-3. Common Misconceptions About Projectile
Wounds

<table>
<thead>
<tr>
<th>Misconception</th>
<th>Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity is the most important determinant of tissue damage.</td>
<td>Velocity is one factor in wounding. An increase in velocity does not increase, per se, the amount of tissue damage. The amount of tissue damage in the first 12 cm of a M-16A1 bullet wound profile has relatively little soft-tissue disruption, similar to that of a .22 long rifle bullet, which has less than half the velocity.</td>
</tr>
<tr>
<td>Projectiles yaw in flight, which can create irregular wounds.</td>
<td>Unless a projectile hits an intermediate target, the amount of yaw in flight is insignificant.</td>
</tr>
<tr>
<td>Exit wounds are always greater than entrance wounds.</td>
<td>This is untrue and has no bearing on surgical care.</td>
</tr>
<tr>
<td>Full metal-jacketed bullets do not fragment, except in unusual circumstances.</td>
<td>The M-193 bullet of the M-16A1 rifle reliably fragments at the level of the cannulure after traversing about 12 cm of tissue in soft-tissue only.</td>
</tr>
<tr>
<td>All projectile tracts must be fully excised due to the effects of the temporary cavity.</td>
<td>Wounds should be washed out with necessary debridement of foreign body and necrotic tissue only. Wounds often require subsequent exploration and debridement due to continued devitalization of tissue.</td>
</tr>
</tbody>
</table>

• **Explosive injuries (Table 1-4).**
 • Explosive agents are materials that undergo rapid exothermic reaction when detonated. The degree to which this reaction occurs is dependent on the characteristics of the explosive agent.
 ♦ Low-order explosives react by rapid burning or conflagration.
 ♦ High-order explosives produce extreme heat, energy, and a pressure wave known as the “blast wave.” The blast wave is reflected and sustained by fixed structures and confined environments (eg, rooms, vehicles, etc) and may potentiate the effects of blast-related injury. By the same mechanism, water—a noncompressible medium—transfers more blast energy, resulting in greater injuries.
 • Blast injuries are divided into **four categories:**
 ♦ **Primary blast injuries** are caused by the blast wave. The mechanism of injury is the impartation of blast energy to the body, particularly in air-filled organs. Survival and injury from primary
blast are contingent on a number of factors, including energy of the blast, confined versus open space, and distance from the explosive source. Casualties who survive may have tympanic membrane rupture, pulmonary barotrauma, and bowel contusion and perforation. Primary brain injury may also occur.

- **Secondary blast injuries** are caused by fragments from the casing and contents of the explosive device and secondary debris (eg, dirt, rocks, body parts, etc).

- **Tertiary blast injuries** are caused by physical displacement of the victim, resulting in blunt force trauma (eg, fractures, brain injury, solid organ injuries, etc).

- **Quaternary blast injuries** are caused by thermal, chemical, and/or radiation effects (eg, burns, inhalation injuries, etc).

 - Care of explosive-related injury is based on the same principles as standard trauma management paradigms. The basic difference between explosive-related injury and other injury mechanisms is that casualties can have all of the above mechanisms.

- **Ballistic.**
 - Fragments from explosive munitions cause ballistic injuries.
 - Fragments are most commonly produced by mortars, artillery, grenades, and improvised explosive devices (IEDs).
 - Fragments produced by these weapons vary in size, shape, composition, and initial velocity. They may vary from a few milligrams to kilograms.
 - Fragments from exploding munitions have greater variability in size and shape when compared with bullets from small arms.
 - Although initial fragment velocities of 5,900 ft/s (1,800 m/s) have been reported for some of these devices, the wounds observed in survivors indicate that striking velocities were less than 1,900 ft/s (600 m/s). Unlike small arms, explosive munitions cause multiple wounds.
The probability of sustaining a given trauma is related to the distance from the epicenter of the detonation.

- **Blast.**
 - The blast wave effects rapidly dissipate as distance from the epicenter increases (Fig. 1-3).

Table 1-4. Classification of Explosive Injury

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristics</th>
<th>Body Part</th>
<th>Types of Injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Unique to high-order explosives; results from the impact of the blast wave</td>
<td>Gas-filled structures most susceptible: lungs, GI tract, middle ear</td>
<td>Blast lung (pulmonary barotrauma) (uncommon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tympanic membrane rupture and middle-ear damage (common)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abdominal hollow viscus perforation and hemorrhage (rare)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Globe (eye) rupture (rare)</td>
</tr>
<tr>
<td>Secondary</td>
<td>Results from flying debris and weapon casing and content fragments</td>
<td>Any body part</td>
<td>Penetrating fragments or blunt injuries</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eye penetration (can be occult)</td>
</tr>
</tbody>
</table>
The ears are most often affected by the blast wave, followed by the lungs and the gastrointestinal (GI) tract hollow organs. GI injuries may present 24 hours later.

- Injury from blast is a pressure and time-dependent function. By increasing the pressure or its duration, the severity of injury will also increase.

Thermobaric.
- Thermobaric devices (eg, fuel-air explosions) work by increasing the duration of a blast wave. The device initially explodes and puts a volatile substance into the air (fuel vapor). A second explosion then ignites the aerosolized material producing an explosion of long duration. The effects from this weapon are magnified when detonated in an enclosed space.
- Air displaced after the explosion creates a blast wind that can cause tertiary blast injuries.

Thermal.
- Thermal effects occur as the product of combustion when the device explodes.
- Patients wounded near exploding munitions may have burns in addition to open wounds, which may complicate the management of soft-tissue injuries.

Antipersonnel landmines.
- There are three types of conventional antipersonnel landmines common throughout the world: static, bounding, and horizontal spray.
Static landmines are small, planted landmines (100–200 g of explosive) that are detonated when stepped on, resulting in two major areas of injury (Fig. 1-4).

- Partial or complete traumatic amputation, most commonly at the midfoot or distal tibia.
- Debris and other tissue are driven up along fascial planes with tissue stripped from the bone.
- Factors influencing the degree of injury include size and shape of the explosive, point of contact with the foot, amount of debris overlying the mine, and the type of footwear.

Bounding mines propel a small explosive device to about 1–2 meters of height and then explode, causing multiple small fragment wounds to those standing nearby. These landmine casualties have the highest reported mortality.

Bounding mines propel a small explosive device to about 1–2 meters of height and then explode, causing multiple small fragment wounds to those standing nearby. These landmine casualties have the highest reported mortality.

Fig. 1-4. Mechanisms of injuries caused by antipersonnel landmines.

Horizontal spray mines propel fragments in one direction. This landmine can be command-detonated or detonated by tripwire. As an example, the US Claymore mine fires about 700 steel spheres of ¾ gram each over a 60° arc. Horizontal spray mines produce multiple small-fragment wounds to those nearby.

- The IED is an unconventional weapon. Typically, another piece of ordnance is used, such as a grenade or a mortar shell, or the device is completely fabricated out of locally available materials.

- Small arms.
 - Pistols, rifles, and machine guns.
 - Trends for small arms since World War II include rifles that have increased magazine capacity, lighter bullets, and increased muzzle velocity.
On the following pages are some examples of the characteristics of commonly encountered firearms. The illustrations show the path of missiles fired from 5 to 10 meters into ordnance gelatin blocks. Variations of range, intermediate targets (eg, body armor), and body tissue will alter the wounds seen.

The AK-47 rifle is one of the most common weapons seen throughout the world. For this particular bullet (full metal jacketed or ball), there is a 25-cm path of relatively minimal tissue disruption before the projectile begins to yaw. This explains why relatively minimal tissue disruption may be seen with some wounds (Fig. 1-5).

![Fig. 1-5. Idealized path of tissue disruption caused by an AK-47 projectile (10% gelatin as a simulation). FMC: full metal case; Vel: velocity; Wt: weight.](image)

The AK-74 rifle was an attempt to create a smaller caliber assault rifle. The standard bullet does not deform in the tissue simulant, but does yaw relatively early (at about 7 cm of penetration).

![Fig. 1-6. Idealized path of tissue disruption caused by an M-193 bullet fired from the M-16A1 rifle (10% gelatin as a simulation). Cal: caliber; FMC: full metal case; Vel: velocity; Wt: weight.](image)
The M-16A1 rifle fires a 55-grain full metal-jacketed bullet (M-193) at approximately 950 m/s. The average point forward distance in tissue is about 12 cm, after which it yaws to about 90°, flattens, and then breaks at the cannalure (a groove placed around the midsection of the bullet). The slightly heavier M-855 bullet used with the M-16A2 rifle shows a similar pattern to the M-193 bullet (Fig. 1-6).

The 7.62-mm NATO (North Atlantic Treaty Organization) rifle cartridge is still used in sniper rifles and machine guns. After about 16 cm of penetration, this bullet yaws through 90° and then travels base forward. A large temporary cavity is formed and occurs at the point of maximum yaw (Fig. 1-7).

Fig. 1-7. Idealized path of tissue disruption caused by the 7.62-mm projectile (10% gelatin as a simulation). FMC: full metal case; NATO: North Atlantic Treaty Organization; Vel: velocity; Wt: weight.

- **Armored vehicle crew casualties.**
 - Since the first large-scale use of tanks during World War I, injuries to those associated with armored vehicles in battle have been a distinct subset of combat casualties.
 - Examples include tanks, infantry fighting vehicles, armored personnel carriers, armored support vehicles, and “light-armored vehicles.”
 - There are three main types of antiarmor weapons: shaped charge, kinetic energy round, and antitank landmines.

- **Shaped charge.**
 - See Fig. 1-8a.
 - The shaped charge or high explosive antitank (HEAT) round consists of explosives packed around a reverse cone of metal called a melt sheet or a liner. This is the principle behind the warhead of the rocket-propelled grenade (RPG).
 - Shaped charges range in diameter from the 85 mm RPG-7 to the 6-inch diameter tube-launched, optically tracked, wire-guided (TOW) missile.
 - Injury effect of shaped charge munitions:
First, there is the jet of the shaped charge itself. This may cause catastrophic wounds to casualties who are hit, or it may ignite fuel, ammunition, or hydraulic fluid.

Second, there is a debris injury factor called spall, which is material knocked off from the inside face of the armored plate. This produces a spray of small, irregularly shaped fragments inside the compartment (Fig. 1-8b).

Fig. 1-8. (a) Disruptive mechanisms of the shaped charge warhead. (b) Diagram taken from photograph of an actual detonation of a shaped charge warhead against an armor plate caused by antitank land mines.

♦ **Kinetic energy round.**

◊ The kinetic energy round contains an aerodynamic piece of hard metal (e.g., depleted uranium or tungsten) shaped like a dart. The metal is usually encased in a carrier or sabot that falls away from the projectile after it leaves the barrel. Fragments of depleted uranium should be treated during initial wound surgery as any retained metal foreign body. There is a potential risk, over the years, that casualties with retained depleted uranium fragments may develop heavy metal poisoning. This concern by itself does not justify extensive operations to remove such fragments during initial wound debridement.

◊ Injuries to those inside a vehicle are due, in part, to the direct effects of the penetrator or from fragments knocked off the inside face of the armored plate. The range of fragment masses may be from a few milligrams to over a kilogram.

♦ **Antitank landmines.**

◊ Blast mines are those with a large explosive filler of 4–5 kg. Injuries are often from blunt trauma due to crewmembers being thrown around inside the vehicle after it detonates the mine.

◊ Closed-head injuries and fractures of the extremities and spine are common.

◊ Mechanisms of injury (Fig. 1-9).
- Multiple injuries take place as the result of defeated armor (as described previously).

- **Thermal:** Burns occur because of ignited fuel, ammunition, hydraulic fluid, or as the direct result of the antiarmor device.

 - Two large studies, one from British World War II tank crewmen and one from Israeli casualties in Lebanon, showed that about one-third of living, wounded casualties have burns.

 - The severity of burns range from superficial to full thickness. Most burns are superficial to exposed skin, most often of the face, neck, forearms, and hands. These are often combined with multiple fragment wounds.

- **Blast overpressure** can occur from the munition breeching a vehicle’s armor and then an explosion occurring inside a confined space. During explosions outside of a vehicle, the blast wave has been shown to be dissipated by the armor.

- **Toxic fumes** secondary to phosgene-like combustion byproducts cause a chemical inhalation injury (Teflon-coated antispall liners of armored vehicles).
Fig. 1-9. Injuries sustained as a result of defeated armor, (A) translational blast injury, (B) toxic gases, (C) blast overpressure, and (D) penetrating missile wounds.

- Treatment is supportive and may require IV steroids (1,000 mg methylprednisolone, single dose).
- Surgical triage considerations: Emergent if pulmonary edema, expectant if hypotensive and cyanotic. Reevaluate nonemergent patients every 2 hours.

- **Inhalation injury.**
 - Injury exacerbated by retained soot and chemicals.
 - **REMEMBER:** Inhalation injury is primarily a chemical injury that will benefit from removing the chemical. Supportive treatment.

- **Unexploded ordnance.**
 - Unexploded ordnances (UXOs) are embedded in the casualty without exploding.
 - Rockets, grenades, mortar rounds.
 - Some UXOs must travel a specific distance (50–70 meters) or number of rotations in order to arm.
 - Fuses are triggered by different stimuli (impact, electromagnetic, laser).
 - **Notify explosive ordnance disposal team immediately!**
 - Thirty-one of 31 victims and treating teams survived removal
(historical review of US casualties).
- The casualty should be triaged as **nonemergent**, placed far from others, and **operated on last**.
- Preplan for how to handle both transport and operation.
- Transport.
 - If by helicopter, ground the casualty to the aircraft (there is a large electrostatic charge from rotors).
- Move into a **safe area**.
 - Revetment, parking lot, or back of building.
- **Operate in a safe area, not in the main OR area.**
- Operative management.
 - Precautions for surgeon and staff.
 - Sandbag operative area, use flak vests and eye protection.
 - Avoid triggering stimuli.
 - Electromagnetic (avoid use of defibrillator, monitors, Bovie cauterizer, blood warmers, or ultrasound or CT machines).
 - Plain radiography is safe. It helps identify the type of munition.
- Anesthesia.
 - Regional/spinal/local preferred.
 - Keep **oxygen** out of the OR.
 - Have anesthesiologist leave after induction.
- Operation: The surgeon should be alone with the patient.
 - Employ gentle technique.
 - Avoid excessive manipulation.
 - Consider amputation if other methods fail.
 - Remove en bloc if possible.

The decision to remove a chemical/biological UXO is a command decision. Immediately after removal, hand the munition to explosive ordnance disposal (EOD) personnel for disposal.

For Clinical Practice Guidelines, go to
Chapter 2

Roles of Medical Care (United States)

Introduction

Military doctrine supports an integrated health services support system to triage, treat, evacuate, and return the casualty to duty in the most time-efficient manner. The system begins with the casualty on the battlefield and ends in hospitals located within the continental United States (CONUS) and other safe havens. Care begins with first responder (self-aid/buddy aid and combat lifesaver), rapidly progresses through tactical combat casualty care (TCCC; care under fire, tactical field care, and tactical evacuation care) and advanced trauma management to stabilizing surgery, followed by critical care transport to a higher taxonomy of care where more sophisticated treatment can be rendered.

A basic characteristic of organizing modern health services support is the distribution of medical resources and capabilities to facilities at various levels of command, diverse locations, and progressive capabilities. This is referred to as the four roles of care (Roles 1–4). As a general rule, no role will be bypassed except on grounds of medical urgency, efficiency, or expediency. The rationale for this rule is to ensure the stabilization and survivability of the patient through advanced trauma management and far-forward resuscitative surgery prior to movement between medical treatment facilities. Different roles denote differences in capability of care. Each higher role has the capability of the role forward of it and in addition expands on that capability.

Role 1

- Role 1 is point of injury care.
 - First responder care: first-aid and immediate lifesaving measures provided by self-aid, buddy aid, or a combat lifesaver (nonmedical team/squad member trained in enhanced first-aid).
 - Care by the combat medic or corpsman trained in TCCC. Additional battlefield providers, with various levels of training, include the Special Forces medical sergeant, special operations combat medic, SEAL (SEa, Air, Land) independent duty corpsman, special boat corpsman, pararescueman, and special operations medical technician.
- Role 1 care—Army.
 - Battalion aid station.
 - Includes triage, treatment, and evacuation.
♦ Care is provided by the physician, physician assistant, and/or medic.
♦ Goals are to return to duty or to stabilize and evacuate to the next higher role medical treatment facility.
♦ No surgical or patient holding capability.

- **Role 1 care—US Marine Corps.**
 - Battalion aid station.
 - Includes triage, treatment, and evacuation.
 - Care is provided by the physician, physician assistant, and/or corpsman.
 - Goals are to return to duty or to stabilize and evacuate to the higher taxonomy of care.
 - No surgical or patient holding capability.
 - Shock trauma platoon.
 - Small emergency medical unit that supports the Marine Expeditionary Force.
 - Includes stabilization and evacuation sections.
 - Staff consists of two emergency medicine physicians and supporting staff (total staff of 25 personnel).
 - No surgical capability.
 - Patient holding time limited to 48 hours.

Role 2
- Includes basic primary care. May also include optometry; combat and operational stress control and behavioral health; and dental, laboratory, radiographic, and surgical capabilities (when augmented).
- Has increased medical capability over Role 1, but limited inpatient bed space.
- 100% mobile.
- Each service has slightly different units at this role.
- **Role 2 care—Army.**
 - Role 2 Army medical assets are located in the:
 - Medical company–brigade support battalion, assigned to modular brigades, which include the heavy brigade combat team, infantry brigade combat team, Stryker brigade combat team, and the medical troop in the armored cavalry regiment.
 - Medical company–area support, which provides direct support to the modular division and support to echelons above brigade units.
Role 2 medical treatment facilities are located in the treatment platoons of medical companies/troops. Includes basic/emergency treatment (advanced trauma management). Has capability to deliver packed red blood cells (liquid). Limited X-ray, clinical laboratory, dental support, combat and operational stress control, and preventive medicine. Those patients who can return to duty within 72 hours are held for treatment.

The **Forward Surgical Team (FST)** is assigned to the medical command or medical brigade and is attached to the Combat Support Hospital when not operationally employed forward with a medical company. The FST provides a rapidly deployable immediate surgical capability, enabling patients to withstand further evacuation. It provides surgical support in the brigade combat team. The team provides damage control surgery for those critically injured patients who cannot be transported over great distances without surgical intervention and stabilization.

- Provides lifesaving resuscitative surgery, including general, orthopaedic, and limited neurosurgical procedures.
- Consists of a 20-person team with 1 orthopaedic surgeon, 3 general surgeons, 2 nurse anesthetists, and critical care nurses and technicians.
- Transportable by ground, fixed wing, or helicopter; some FSTs are airborne deployable. Operational within 1 hour of arrival at the supported company.
- Can provide continuous operations for up to 72 hours.
- Has a ~1,000 sq ft surgical area.
- Includes 2 operating tables for a maximum of 10 cases per day and a total of 30 operations within 72 hours.
- Can provide postoperative intensive care for up to eight patients for up to 6 hours.
- The supporting medical company must provide logistical support and security.
- X-ray, laboratory, and patient administrative support are provided by the supporting medical company.
- Requires additional electricity, water, and fuel from the supporting medical company.
- The FST is not designed, staffed, or equipped for stand-alone operations or for conducting sick-call operations. Augmentation requirements are discussed in FM 4-02.25, *Employment of Forward*
Surgical Teams: Tactics, Techniques, and Procedures. FSTs have been split to create two teams during Operation Iraqi Freedom/Operation Enduring Freedom.

NOTE: The Role 2 definition used by NATO (North Atlantic Treaty Organization) forces (Allied Joint Publication-4.10(A)) includes terms and descriptions not used by US Army forces. US Army forces subscribe to the basic definition of a Role 2 medical treatment facility providing greater resuscitative capability than is available at Role 1. Surgical capability is not mandatory at Role 2 according to US Army doctrine. The NATO description of Role 2 care, however, includes damage control surgery.

- **Role 2 care—Air Force.**
 - **Mobile Field Surgical Team (MFST).**
 - Consists of a five-person team (general surgeon, orthopaedist, anesthetist, emergency medicine physician, and an OR nurse or technician).
 - Can provide 10 lifesaving or limb-saving procedures in 24–48 hours from five backpacks (350-lb total gear).
 - Designed to augment an aid station or flight line clinic; no holding capacity.
 - Cannot stand alone; requires water, shelter of opportunity, communications, etc.
 - Integral to remainder of Air Force Theater Hospital System.
 - **Small Portable Expeditionary Aeromedical Rapid Response (SPEARR) team.**
 - Consists of a 10-person team: 5-person MFST, 3-person Critical Care Air Transportation Team (CCATT; see Chapter 4, Aeromedical Evacuation), and a 2-person preventive medicine team (flight surgeon and public health officer).
 - Includes a 600 sq ft tent; stand-alone capable for 7 days.
 - Can provide 10 lifesaving or limb-saving procedures in 24–48 hours.
 - Designed to provide surgical support, basic primary care, postoperative critical care, and preventive medicine for the early phase of deployment.
 - Highly mobile, with all equipment fitting in a one pallet-sized trailer.
 - **Expeditionary Medical Support (EMEDS) Basic.**
- Provides medical and surgical support for an airbase, providing 24-hour sick-call capability, resuscitative surgery, dental care, and limited laboratory and X-ray capability.
- The 25-member staff includes a SPEARR team.
- Can provide 10 lifesaving or limb-saving procedures in 24–48 hours.
- Has 4 holding beds, 2 OR tables, and 3 climate-controlled tents transportable on three pallets.
- Total size is ~2,000 sq ft.
- **EMEDS + 10.**
 - Adds 6 beds to EMEDS basic, for total of 10 beds.
 - No additional surgical capability.
 - Has a 56-person staff.
 - Consists of 6 tents transported on 14 pallets.
- **Role 2 care—Navy.**
 - **Casualty Receiving and Treatment Ship (CRTS).** CRTSs are part of an Amphibious Ready Group (ARG) and are usually comprised of one Marine amphibious assault ship (Tarawa class) or landing helicopter deck Wasp-class ship, whose primary mission is the transport and deployment of Marines and whose secondary mission is to function as a casualty-receiving platform. An ARG typically comprises three ships, with surgical capability only on the CRTS.
 - Ships have 45 ward beds, 4 ORs (with augmented staff; see below), and 17 ICU beds.
 - A 176-person Fleet Surgical Team consists of 1 surgeon, 1 certified registered nurse anesthetist, 1 critical care nurse, 1 OR nurse, 1 general medical officer, and 12 support staff.
 - A CRTS and the Fleet Surgical Team can be augmented with 84 additional personnel to increase capability from one OR to four, as well as provide the following specialties: 2 orthopaedic surgeons and 1 oral and maxillofacial surgeon.
 - Ships have laboratory, X-ray, and frozen blood capabilities.
 - Designed for receipt and flow of casualties from helicopter flight deck and landing craft well deck.
 - Have triage areas for 50 casualties.
 - Doctrinal holding capability is limited to 3 days.
- **Aircraft carrier battle group.**
Includes 1 OR, 52 ward beds, and 3 intensive care beds.

- Staff includes 1 surgeon and 5 additional medical officers.
- Medical assets aboard aircraft carriers are intended for use by the aircraft carrier and its task force. Aircraft carriers are not casualty-receiving ships and are not included in medical assets for support to ground forces.

- Role 2 care—US Marine Corps.
 - **Surgical company.**
 - Provides surgical care for the Marine Expeditionary Force. Basis of allocation is one per infantry regiment.
 - Provides stabilizing surgical procedures (damage control surgery).
 - Doctrinally consists of 4 forward resuscitative surgical systems, 4 shock trauma platoons, and 4 en route care teams.
 - Has 20-bed capability.
 - Portable digital X-ray and minimal laboratory and blood banking capabilities.
 - Patient holding capability up to 72 hours.
 - **Forward Resuscitative Surgical System.**
 - Basic surgical capability module.
 - Rapid assembly, highly mobile.
 - Can provide resuscitative surgery for 18 patients within 48 hours without resupply.
 - The 8-person team includes 2 surgeons, 1 anesthesiologist, 1 critical care nurse, 2 OR technicians, and 2 corpsmen.
 - Holding capability of 4 hours.
 - No intrinsic evacuation capability.
 - Not a stand-alone organization.
 - **En route care team.**
 - Two-person team consisting of a critical care registered nurse and a corpsman.
 - Provides transport of two critically injured or ill, but stabilized, postoperative casualties.
 - Has own equipment package.
 - Capable of transporting two patients, one ventilated.
 - Dependent on opportune lift.
Role 3

- At Role 3, the patient is treated in a medical treatment facility staffed and equipped to provide care to all categories of patients, including resuscitation, initial wound surgery, damage control surgery, and postoperative treatment. This role of care expands the support provided at Role 2. Patients who are unable to tolerate and survive movement over long distances receive surgical care in a hospital as close to the supported unit as the tactical situation allows. This role includes provisions for:
 - Evacuating patients from supported units.
 - Providing care for all categories of patients in a medical treatment facility with the proper staff and equipment.
 - Providing support on an area basis to units without organic medical assets.

- Role 3 care—Army.

 - **Combat Support Hospital (248-bed).** Provides hospitalization and outpatient services for all categories of patients within theater.
 - Can provide hospitalization for up to 248 patients. The hospital includes a headquarters and headquarters detachment, and two completely functional hospital companies: one 84-bed and one 164-bed. Collectively, the hospital has four wards providing intensive nursing care for up to 48 patients and 10 wards providing intermediate nursing care for up to 200 patients.
 - Provides emergency treatment to receive, triage, and prepare incoming patients for surgery.
 - Has surgical capability—including general, orthopaedic, thoracic, urological, gynecological, and oral and maxillofacial—based on six OR tables staffed for 96 operating table hours per day.
 - Consultation services for inpatients and outpatients include area support for units without organic medical services.
 - Also provides pharmacy, psychiatry, public health nursing, physical therapy, clinical laboratory, blood banking, radiology and nutrition care services.
 - The early-entry hospitalization element (44-bed) provides up to 72 hours stand-alone operations, without resupply. Can provide hospitalization for up to 44 patients, with two wards providing intensive care nursing for up to 24 patients total and one ward providing intermediate care nursing for up to 20 patients. The hospitalization augmentation element (40-bed) augments the early-entry hospitalization element. Provides outpatient specialty clinic services and intermediate care hospital beds. The two elements together comprise an 84-bed company.
The hospital company (164-bed) consists of two wards that provide intensive care nursing for up to 24 patients total and seven wards that together provide intermediate care nursing for up to 140 patients.

- **Augmentation teams.** The Combat Support Hospital may be augmented by one or more medical detachments, hospital augmentation teams, or medical teams. These may include:
 - **Medical detachments—minimal care** capable of providing minimal/convalescent care, nursing, and rehabilitative services in support of Role 3 hospitals.
 - **FSTs** available to augment the surgical services of the Combat Support Hospital with general surgery and orthopaedic surgery capabilities when not deployed forward with medical companies to provide forward resuscitative surgical care and damage control surgery.
 - **Hospital augmentation team–head and neck** provides special surgical care for ear-nose-throat surgery, neurosurgery, and eye surgery to support the Combat Support Hospital plus specialty consultative services. The hospital team (head and neck) is the only organization authorized a CT scanner.
 - **Hospital augmentation team–special care** provides pathology support to the Combat Support Hospital clinical laboratory and specialty consultative services.
 - **Hospital augmentation team–pathology** provides pathology support to the Combat Support Hospital clinical laboratory and specialty consultative services.
 - **Medical team–renal hemodialysis** provides renal hemodialysis care for patients with acute renal failure and consultative services.
 - **Medical team–infectious disease** provides infectious disease investigation, takes measures to control the spread of disease, ensures access to health services, and provides consultative services. This team may include or partner with special care teams with a preventive medicine/public health nurse when public health measures are required.

NOTE: Based on the experiences of a decade of theater operations, a draft Army force design update, if approved, will dramatically change the structure of the Combat Support Hospital and augmentation teams to enhance future medical capabilities in theater and further improve modularity. It is also important to note that operational employment does not always mirror doctrine. As
an example, the only organization doctrinally authorized a CT scanner is the hospital augmentation team (head and neck). However, upon operational employment, a Combat Support Hospital may very well be provided with a CT scanner even if a hospital augmentation team (head and neck) is not attached.

- **Role 3 care—Air Force.**
 - **EMEDS + 25.**
 - 25-bed version of EMEDS basic.
 - Has 84 personnel, 2 OR tables, 9 tents (600 sq ft), and 20 pallets.
 - Can provide 20 operations in 48 hours.
 - Additional specialty modules can be added, including vascular/cardiothoracic, neurosurgery, obstetrics/gynecology, ear-nose-throat, and ophthalmology teams; each comes with its own personnel and equipment modules.
 - **Air Force theater hospital.**
 - Structures and staffing are capabilities-based and modular.
 - Represents the largest Air Force critical care and surgically capable medical treatment facility in the theater of operations.
 - Can function as a theater aeromedical evacuation hub.

- **Role 3 care—Navy.**
 - **Expeditionary medical facility.**
 - Standard configuration has 150 beds, including 40 intensive care beds and 4 ORs.
 - Provides emergency treatment to receive, triage, and prepare incoming patients for surgery.
 - Has surgical capability, including general, orthopaedic, thoracic, urological, gynecological, and oral and maxillofacial, based on four OR tables staffed for 96 operating table hours per day.
 - Consultation services for inpatients and outpatients include area support for units without organic medical services.
 - Also provides pharmacy, psychiatry, public health nursing, physical therapy, clinical laboratory, blood banking, radiology, and nutrition care services.
 - Stand-alone; full ancillary services.
 - Complete base operating support available.
 - Includes class VIII support until theater is “mature” or approximately 60 days after operations commence.
Large holding capability.

NOTE: Based on the experiences of a decade of evolutionary operations, Navy Expeditionary Health Service Support is considering a dramatic change to the structure of expeditionary medical facilities. Determinations will be made regarding scalability, modularity, mobility, and deployable capability to improve and enhance Navy Medicine’s flexibility in providing medical support across the full range of military operations.

- **Hospital ships (currently the USNS Mercy and USNS Comfort).**
 - Each ship has 999 beds consisting of 88 intensive care beds (68 general intensive care beds and 20 postsurgical recovery beds). All 88 beds are equipped with piped in oxygen and suction, and cardiac monitoring capability. One ward is configured with 11 respiratory isolation beds.
 - Inpatient ward capability includes 400 intermediate care and 500 minimal care/convalescence beds. The 500 minimal care beds are upper bunks, unsuitable for injury patterns related to fractures. Most upper bunks are typically used by escorts and patients ready to return to full duty.
 - Each ship has support services for up to 12 ORs.
 - Each ship has 1,216 medical staff (273 officers and 943 enlisted).
 - Extensive laboratory and X-ray capabilities, including CT scan.
 - Large blood bank with frozen blood capability.
 - Patients are allowed a 5-day average stay in accordance with a baseline 7-day evacuation policy.

Role 4
- Role 4 medical care is found in CONUS-based hospitals and other safe havens. Mobilization requires expansion of military hospital capacities and the inclusion of the Department of Veterans Affairs and civilian hospital beds in the National Disaster Medical System to meet the increased demands created by the evacuation of patients from the area of operations.

For Clinical Practice Guidelines, go to
Chapter 3

Mass Casualty and Triage

Introduction

Mass casualties have the potential to rapidly overwhelm multiple levels of care and evacuation. Because the Joint Theater Trauma System (JTTS) has been adapted to provide rapid movement of casualties through the continuum of care, mass casualty events may occur at military treatment facilities with little or no advance notice. Asymmetric warfare may further complicate the mass casualty event by inclusion of combatant, noncombatant, or third country nationals among the injured. The mass casualty demands a rapid transition from routine to contingency medical operations triggered by the earliest recognition of this specter within the fog of war. The transition will be eased by a mass casualty response plan that must be designed, exercised, and assessed to reflect relevant site and evacuation capability.

A mass casualty event overwhelms immediately available medical capabilities to include personnel, supplies, and/or equipment.

Effective mass casualty response is founded on the principle of triage, the system of sorting and prioritizing casualties based on the tactical situation, mission, and available resources. It is the best means to establish order in a chaotic environment and the best hope to provide the greatest good to the greatest number within the limitations of time, distance, and capability. Triage is a constant and dynamic process as casualties move within and through the system of care.

The ultimate goals of combat medicine are the return of the greatest possible number of warfighters to combat and the preservation of life, limb, and eyesight.

The decision to withhold care from a casualty who in another less overwhelming situation might be salvaged is difficult for any physician, nurse, or medic. Decisions of this nature are unusual, even in mass casualty situations. Nonetheless, the overarching goal of providing the greatest good to the greatest number must guide these difficult decisions. Commitment of resources should be decided first based on the mission and immediate tactical situation and then by medical necessity, irrespective of a casualty’s national or combatant status.

Triage Categories
It is anticipated that triage will be performed at all levels. **Traditional categories of triage are immediate, delayed, minimal, and expectant.**

- **Immediate:** This group of injured requires attention within minutes to 2 hours on arrival to avoid death or major disability. The procedures in this category should focus on patients with a good chance of survival with immediate intervention. Injuries include:
 - Airway obstruction or potential compromise.
 - Tension pneumothorax.
 - Uncontrolled hemorrhage.
 - Torso, neck, or pelvis injuries with shock.
 - Head injury requiring emergent decompression.
 - Threatened loss of limb.
 - Retrobulbar hematoma.
 - Multiple extremity amputations.

- **Delayed:** This group includes those wounded who are in need of surgery, but whose general condition permits delay in treatment without unduly endangering life, limb, or eyesight. Sustaining treatment will be required (eg, fluid resuscitation, stabilization of fractures, and administration of antibiotics, bladder catheterization, gastric decompression, and relief of pain). Injuries include:
 - Blunt or penetrating torso injuries without signs of shock.
 - Fractures.
 - Soft-tissue injuries without significant bleeding.
 - Facial fractures without airway compromise.
 - Globe injuries.
 - Survivable burns without immediate threat to life (airway, respiratory) or limb.

- **Minimal:** This group has relatively minor injuries (eg, minor lacerations, abrasions, fractures of small bones, and minor burns) and can effectively care for themselves or be with minimal medical care. These casualties may also provide a resource for manpower to assist with movement or potentially even care of the injured. When a mass casualty incident occurs in close proximity to a medical treatment facility (MTF), it is likely that these will be the first casualties to arrive, bypassing or circumventing the casualty evacuation chain. Such casualties may inundate the facility leading to early commitment and ineffective utilization of resources. To prevent such an occurrence, it is imperative to secure and strictly control access to the MTF immediately upon notification of a mass casualty event.

- **Expectant:** This group has injuries that overwhelm current medical resources at the expense of treating salvageable patients. The expectant casualty should not be abandoned, but should be separated from the view of other casualties and intermittently reassessed. These casualties require a staff capable of monitoring and providing comfort measures. Injuries include:
- Any casualty arriving without vital signs or signs of life, regardless of mechanism of injury.
- Transcranial gunshot wound (GSW) with coma.
- Open pelvic injuries with uncontrolled bleeding and class IV shock.
- Burns without reasonable chance for survival or recovery.
- High spinal cord injuries.

Triage Management

Those previously classified as minimal injuries that are evacuated to a surgical unit should not be brought through the resuscitation area. These casualties should be diverted to an area near the facility where they are reassessed, receive care—and, condition permitting—be available to assist with movement of the severely injured. The remaining casualties should be divided into three categories: emergent, nonemergent, and expectant. These categories are useful in dividing casualties into those requiring further immediate surgical treatment (emergent), and those that are less injured, still require care in the near term (6–12 hours), but have low expected mortality (nonemergent). It is anticipated that 10%–20% of casualties presenting to a surgical unit will require urgent surgery, but this is incident dependent. The vast majority of the wounded will not require intensive decision-making, intervention, and care.

Triage is a fluid process at all levels, with altered situations and resources requiring a change in category at any time and in any setting. In the extreme example, a casualty may be triaged from emergent to expectant during surgery, abruptly terminating the operation (“on-the-table triage”).

Special Triage Considerations

Patients who do not easily fit into the standard categories or who pose a risk to other casualties, medical personnel, or the treatment facility may require special consideration.

- **Wounded contaminated in a biological and/or a chemical battlefield environment:** These casualties must be decontaminated prior to entering the treatment facility. Prehospital care may be provided outside of the medical facility by appropriately protected medical personnel prior to decontamination.
- **Retained, unexploded ordnance:** These patients should be segregated immediately and treated last. See Chapter 1, Weapons Effects and War Wounds, which describes the special handling of these wounded.
- **Noncombatant local or third country nationals:** Due to the asymmetric nature of modern warfare, these individuals may be brought into the military trauma system for care during a mass casualty event that may or may not include United States or allied forces. Although the mission and tactical situation must be considered first, in most situations medical necessity will guide triage decisions. It is crucial to recognize the capabilities of local national healthcare resources and to factor these limitations
prospectively into care and triage decisions. Such decisions must be based on the best and most timely information available.

- **Enemy prisoners of war/internees/detainees:** Although treatment is based on medical necessity, it is essential that the threat of “suicide bombers” and “human booby traps” be prevented by carefully screening and disarming all casualties prior to moving into treatment areas, including the triage area. See Chapter 32, Care of Enemy Prisoners of War/Internees.

- **US, allied, and third nation contractors:** Although these individuals will also receive care based on mission, tactical situation, and medical necessity, it should be recognized that less stringent predeployment health assessments or requirements may permit a population with significant chronic health co-morbidity to enter a theater of war as a population at risk. The effect of co-morbidity on survivability may need to be considered in triage decision-making. *(EXAMPLE: A casualty on antiplatelet therapy with life-threatening hemorrhagic injury in a setting where availability of blood components is limited.)*

- **Combat stress:** Rapid identification and immediate segregation of stress casualties from injured patients will improve the odds of a rapid recovery. With expeditious care, these casualties can be returned to duty (80%). Do not use them as litter bearers because this may increase the trauma you seek to treat.
 - Place patient in one of two groups.
 - **Light stress:** Immediate return to duty or return to unit or unit’s noncombat support element with duty limitations and rest.
 - **Heavy stress:** Send to combat stress control restoration center for up to 3 days reconstitution.
 - Use the **BICEPS** mnemonic where resources/tactical situations allow:
 - **Brief:** Keep interventions to 3 days or less of rest, food, and reconditioning.
 - **Immediate:** Treat as soon as symptoms are recognized—do not delay.
 - **Central:** Keep in one area for mutual support and identity as soldiers.
 - **Expectant:** Reaffirm that we expect return to duty after brief rest; normalize the reaction and their duty to return to their unit.
 - **Proximal:** Keep them as close as possible to their unit. This includes physical proximity and using the ties of loyalty to fellow unit members. Do this through any means available. **Do not evacuate away from the area of operations or the unit, if possible.**
Simple: Do not engage in psychotherapy. Address the present stress response and situation only, using rest, limited catharsis, and brief support (physical and psychological).

Or refer: Must be referred to a facility that is better equipped or staffed for care.

If battlefield casualties do not have physical injuries, DO NOT send them out of the battle area, because this will worsen stress reactions.

Resource Constraints

Triage decisions are influenced by multiple factors. Areas to consider include:

- **External factors**: The surgeon/medic may have limited knowledge of and no control over external issues. Nonetheless, optimal casualty care requires at least an assessment of these factors.
 - **Tactical situation and the mission**: The decision to commit scarce resources cannot be based on the current tactical/medical/logistical situation alone. One severely wounded, resource-consuming casualty may deplete available supplies and thus prevent future, less seriously injured casualties from receiving optimal care. Liaison with the tactical force operating in your area is essential to making sound triage decisions. Operational security may make this kind of information difficult to obtain in a timely fashion. **Education of, and communication with, line commanders about the critical nature of this information is essential.**
 - **Resupply**: Having a sense of how and when expended internal resources will be resupplied may prove critical to making the decision to treat or not treat the individual casualty.
 - **Time**:
 - **Evacuation to the MTF**: The shorter the time and distance interval from injury to arrival will increase the volume and complexity of triage decisions and increase the risk of the facility to be overwhelmed by the walking wounded. Securing the facility and strictly controlling points of entry are key steps in the execution of a mass casualty response. Longer intervals will result in the opposite, with “autotriage” of the sicker patients from the emergent category to the expectant.
 - **Time spent with the individual casualty**: In a mass casualty situation, time itself is a resource that must be carefully managed. All patients receive an evaluation, but only some receive immediate or operative interventions. Time on the OR table is usually the choke point. Apply the concepts of damage control to minimize the time casualties are required to spend in surgery. On-table triage to the expectant category may be necessary due to deteriorating
casualty physiological response and/or the pattern of injury (aorta-vena cava GSW, dual exsanguination sites, extensive pancreatic-duodenal injury, etc).

♦ **Evacuation out:** Casualties must move expeditiously to the next level of care, otherwise valuable local resources will be consumed in maintaining patients, thereby preventing additional patients from receiving care.

- **Internal factors:** These issues are known to all medical personnel and should be factored into triage decisions.
 - **Medical supplies:** These supplies include equipment, drugs, oxygen, dressings, sutures, sterilization capability, blood, etc. **Immediate** liaison with the logistics system in the MTF and the theater of operation is essential to ensure the availability and timely resupply of these items, to include “surge” capabilities and local resource availability. Blood products may be scarce in an immature theater or during accelerated consumption in the case of mass casualty. Hemostatic or damage control resuscitation may be precluded by the availability of hemostatic transfusion components (plasma, platelets, cryoprecipitate). Transfusion medicine in the theater of war has in the past and will likely continue in the future to rely on the walking blood bank. It is crucial that expeditionary medical units have a system in place for effective and expedient execution of a fresh whole blood drive. Early consideration of a fresh whole blood drive should be included in the response to a mass casualty.
 - **Space/capability:** This category includes the number of OR tables and ICU beds (holding capacity and ward capacity), the available diagnostic equipment—ultrasound, X-ray, CT—and laboratory tests. For example, if your MTF has the only CT scanner in theater, plan for an increased number of head-injured patients. Early in the mass casualty response, an assessment should be made to clear occupied beds in the hospital, either by discharge or potential transfer of patients to other appropriate treatment facilities within theater. This should be accomplished in coordination with the theater medical regulator and occur as soon as possible following notification.
 - **Personnel:** This includes knowing the professional capability (type and experience of individual physician/nurse/medic), and the emotional stability, sleep status, etc, of your personnel. This perishable resource must be preserved; for example, 24 hours of continuous operation may exhaust your only OR crew and may necessitate diversion of casualties to another facility. A response plan should include means to sustain and refresh the staff with hydration and energy-dense foods during extended periods of high activity. Robust and practical plans for personnel recall must be a component of the
mass casualty response plan. Also recognize that medical professionals may possess a range of skill sets that is not reflected in their deployment specialty (eg, the Reserve Component physician who is a general surgeon in civilian practice, but who is assigned as a general medical officer or flight surgeon). Identifying and including these individuals as appropriate in a mass casualty response is a force multiplier.

- **Stress:** Soldiers, including medical personnel, are affected by the consequences of war; individual and unit capabilities are degraded during sustained operations. The personal impact of military triage on the medical team cannot be overemphasized. It is extremely emotional, and measures should be undertaken to minimize these effects. This is best provided by trained staff. Cohesive groups may tolerate stress better and assist each other in dealing with traumatic events when allowed to process the event in a group format according to their own traditions.

Triage Decision-Making

The complexity of decision-making in triage varies greatly, often depending on the level of training and experience of the triage officer, as well as the location where the triage decision is being made. In the emergent treatment area, the surgeon (ie, surgeon of the day; SOD) must make decisions about whether surgery is needed, the timing of the surgery, and the priority of multiple surgical patients. Regardless of the type of triage decision needed, the following information is of critical importance in reaching that decision:

- **Initial vital signs:** Pulse (rate and quality), mentation, and difficulty breathing (eg, a casualty with normal mentation and radial pulse quality is nonemergent). Respiratory rate alone is not predictive of the appropriate triage category.
- **Pattern of injury:** A historical perspective aids the triage decision-maker in understanding the distribution of wounds encountered on the modern battlefield and the likely mortality associated with those wounds. The majority of combat wounded will suffer nonfatal extremity injuries. In general, these will be triaged as nonemergent.
- **Response to initial intervention:** Does the shock state improve, remain unchanged, or worsen with initial resuscitative efforts? A patient who fails to respond rapidly to initial resuscitation should be triaged ahead of a patient with a good response; alternatively, this nonresponder in a mass casualty situation may need to be placed in the expectant category.

Data from more recent American combat operations in Iraq (Operation Iraqi Freedom) and Afghanistan (Operation Enduring Freedom), 2003–2004—indicating the spectrum of injury type (Table 3-1), mechanism (Table 3-2), and anatomical location (Table 3-3)—are found in the tables.
Table 3-1. Type of Injury*

<table>
<thead>
<tr>
<th>Type of Injury</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrating</td>
<td>645</td>
<td>35.7</td>
</tr>
<tr>
<td>Blast</td>
<td>425</td>
<td>23.5</td>
</tr>
<tr>
<td>Blunt</td>
<td>410</td>
<td>22.7</td>
</tr>
<tr>
<td>Unknown</td>
<td>84</td>
<td>4.6</td>
</tr>
<tr>
<td>Crush</td>
<td>63</td>
<td>3.5</td>
</tr>
<tr>
<td>Mechanical</td>
<td>49</td>
<td>2.7</td>
</tr>
<tr>
<td>Thermal</td>
<td>48</td>
<td>2.7</td>
</tr>
<tr>
<td>Undetermined</td>
<td>21</td>
<td>1.2</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>0.9</td>
</tr>
<tr>
<td>Chemical agent</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Bites/stings</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>Degloving</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>Electrical</td>
<td>7</td>
<td>0.4</td>
</tr>
<tr>
<td>Heat injury</td>
<td>7</td>
<td>0.4</td>
</tr>
<tr>
<td>Inhalation</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>Multiple penetration system</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,807</td>
<td>100</td>
</tr>
</tbody>
</table>

*A casualty may have more than one type of injury. These numbers are based on 1,530 Role 3 injuries.

Setup, Staffing, and Operation of Triage System

- **Initial triage area.**

 All casualties should flow through a single triage area and undergo rapid evaluation by the initial triage officer. Casualties will then be directed to separate treatment areas (emergent, nonemergent, and expectant), each with its own triage/team leader. The expectant will have a medical attendant, ensuring monitoring and optimal pain control. The dead should be sent to the morgue and must remain separate from all other casualties, especially the expectant. Unidirectional flow of patients is important to prevent clogging the system. Reverse patient flow in any treatment area is highly
discouraged.

Table 3-2. Mechanism of Injury*

<table>
<thead>
<tr>
<th>Mechanism of Injury</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>IED</td>
<td>310</td>
<td>18.4</td>
</tr>
<tr>
<td>MVA</td>
<td>207</td>
<td>12.3</td>
</tr>
<tr>
<td>GSW</td>
<td>188</td>
<td>11.1</td>
</tr>
<tr>
<td>Grenade (includes RPG)</td>
<td>170</td>
<td>10.1</td>
</tr>
<tr>
<td>Shrapnel/fragment</td>
<td>141</td>
<td>8.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>119</td>
<td>7.0</td>
</tr>
<tr>
<td>Machinery or equipment</td>
<td>95</td>
<td>5.6</td>
</tr>
<tr>
<td>Fall or jump from height</td>
<td>90</td>
<td>5.3</td>
</tr>
<tr>
<td>Mortar</td>
<td>84</td>
<td>5.0</td>
</tr>
<tr>
<td>Burn</td>
<td>53</td>
<td>3.1</td>
</tr>
<tr>
<td>Aggravated range of motion</td>
<td>31</td>
<td>1.8</td>
</tr>
<tr>
<td>Landmine</td>
<td>29</td>
<td>1.7</td>
</tr>
<tr>
<td>Other</td>
<td>27</td>
<td>1.6</td>
</tr>
<tr>
<td>Knife or other sharp object</td>
<td>21</td>
<td>1.2</td>
</tr>
<tr>
<td>Helicopter crash</td>
<td>19</td>
<td>1.1</td>
</tr>
<tr>
<td>Blunt object (eg, rock or bottle)</td>
<td>17</td>
<td>1.0</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>16</td>
<td>0.9</td>
</tr>
<tr>
<td>Free falling objects</td>
<td>14</td>
<td>0.8</td>
</tr>
<tr>
<td>Bomb</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>None</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>UXO</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Environmental</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>Exertion/overexertion</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>Flying debris</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>Building collapse</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Anatomical Location</td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Multiple sites</td>
<td>761</td>
<td>49.7</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>248</td>
<td>16.2</td>
</tr>
<tr>
<td>Upper extremity</td>
<td>223</td>
<td>14.6</td>
</tr>
<tr>
<td>Head/face</td>
<td>174</td>
<td>11.4</td>
</tr>
<tr>
<td>Thorax/back</td>
<td>48</td>
<td>3.1</td>
</tr>
<tr>
<td>Neck</td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td>None</td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td>Abdomen</td>
<td>16</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>9</td>
<td>0.6</td>
</tr>
<tr>
<td>Buttock</td>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>N/A</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>Genitalia</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,530</td>
<td>100</td>
</tr>
</tbody>
</table>

N/A: not applicable.

*Casualties with more than one injury location are included in “multiple sites.” These numbers are based on 1,530 Role 3 casualties.

Qualities of an ideal initial triage area should include:

- **Proximity** to the receiving area for casualties—landing zone, ground evacuation, and decontamination area.

- **One-way flow** both into and out of the triage area through separate routes to **easily identified, marked** (signs, colors, chemical lights, etc) treatment areas.

- **Well-lit, covered, climate-controlled** (if possible) area with sufficient space for easy access, evaluation, and transport of casualties in and out.

- Dedicated **casualty recorders** to identify, tag, register, and record initial triage/disposition.
 - Using an indelible marker to place numbers on the casualty’s forehead is an easy, fast way to track patients. Any method that is reproducible and simple will suffice.
 - If resources allow, casualty tracking may include stationing administrative personnel at every entry/exit.

- **Sufficient litter bearers** (controlled by an NCO) to ensure continuous casualty flow.

- **Initial triage officer.**
 - Ideally, a surgeon experienced in dealing with combat trauma should be used in this capacity.
 - It is essential that another physician with clinical experience be trained to assume this function (i.e., Emergency Medicine physician).
 - Using mass casualty exercises or limited mass casualty situations is one way to train/identify the right person to fill this role in the absence of a surgeon.

- **Emergent treatment area.**
 - **Setup.**
 - Close proximity to initial triage area with direct access.
 - Administrative personnel stationed at entry and exit doors to record patient flow. Ideally, a display board or a computer should be used to record patient identity, location, and disposition.
 - Series of resuscitation bays (number depends on available resources/personnel).
 - Allow sufficient room for three-person team to work.
 - Easy access in and out of bay.
Availability of equipment needed for ATLS (Advanced Trauma Life Support)-style resuscitation (Figs. 3-1 and 3-2).

- Staffing.
 - At Role 1 facilities, the most experienced healthcare provider should serve as the mass casualty Team Leader. At Role 2–4 facilities, the Chief of Trauma (most trauma-experienced surgeon) is responsible for overarching clinical management of the mass casualty response. The Chief of Trauma or a designated surgeon serves as the Chief Surgical Triage Officer at Role 2–4 facilities.
 - Determine priority for operative interventions.
 - Identify patients who require early evacuation.
 - Maintain close communication with the operating surgeon(s).
 - Reassess patients awaiting surgery or evacuation.
Fig. 3-1. Triage area. ADMIN: administrative personnel; OR: operating room.
Fig. 3-2. Resuscitation station. IV: intravenous; NG: nasogastric; O₂: oxygen; Resus: resuscitation.

- Administrative person: Responsible for registering and tracking flow of patients through unit.
- Resuscitation team: A physician or physician extender, nurse, and medical technician, ideally.
 - Each individual resuscitation treatment team will coordinate movement of its patients with the Chief Surgical Triage Officer.
- Operation.
 - Manpower team delivers patient.
 - Chief Surgical Triage Officer retriages patient and assigns resuscitation team to patient.
 - Resuscitation team treats patient and coordinates required disposition (radiography, surgery, ICU, ward, and air evacuation).
 - Resuscitation team communicates to Chief Surgical Triage Officer
the recommended disposition.

- Chief Surgical Triage Officer coordinates movement of patient to next stop.
- Administrative person records disposition.

- **Nonemergent treatment area.**

An empty ward, a cleared out supply area, or other similar space can be utilized. Appropriate medical and surgical supplies should be stockpiled and easily identifiable. A team consisting of a physician or physician extender and several nurses and medical technicians can form the nucleus of the treatment team. Lacerations can be sutured, fractures splinted, IVs placed, and radiographs taken. The team leader should be alert to changing vital signs, mental status changes, and nonrespondents to treatment. Any evidence of deterioration should prompt a retriage decision and a possible transfer to the emergent treatment area.

- **Expectant area.**

Ideally, expectant casualties should be kept in an area away from all other treatment areas. The team leader can be anyone capable of giving parenteral pain medications and monitoring the patients. The patient should be kept comfortable. *After all other patients have been treated, a retriage of these patients should be done and treatment instituted if appropriate.*

Additional Triage Operation Tips

- Diversion of casualties to another facility should be considered. Triage of inpatients should be done to identify patients who may be discharged or transferred to predetermined facilities.
- As the casualties finally clear the OR suites, the pace will slow for the surgeons. ICU and ward care will supplant operative procedures. Casualties initially undertriaged (~10%) will be discovered and will require care. The recovery room and ICUs will become crowded, nursing shifts will have to be extended, and fatigue will rapidly become a hospital-wide factor.
- Numerous authors have stated that, after the first 24 hours of a mass casualty ordeal, the activities of the care providers must be decreased by 50%, allowing for recovery and rest for the participants. A new rotation must be established to sustain a modified, but continuous, effort. Once the acute phase is over, personnel must be required to rest.
- Prior to an actual mass casualty situation, all deployed or deployable units should exercise the mass casualty response plan to ensure smooth patient flow and identification. These exercises should evaluate patient registry and tracking, personnel, supplies, and equipment. The practical value of exercising and adapting the response plan to the changing facility, personnel, and tactical situation cannot be overstressed.
- Each mass casualty event or exercise requires debriefing, with evaluation of
process and action plan to improve future response.

- Given the rotational nature of expeditionary medicine, lessons learned and after-action reports should be reviewed with incoming staff.

Triage remains our most constant and effective method of establishing order in overwhelming chaos. The organic integration of triage principles in tactical, logistical, and clinical decision-making remains the best hope for providing the greatest good to the greatest number.

For Clinical Practice Guidelines, go to
Chapter 4

Aeromedical Evacuation

Introduction
Evacuation of injured personnel using rotary or fixed-wing aircraft has revolutionized the rapid transport of casualties from areas where there is either inadequate or no care available, to medical treatment facilities (MTFs) where essential and/or definitive care can be rendered. Although use of an aircraft can decrease transport time, the aeromedical environment creates unique stresses on the injured patient. The following are terms that describe evacuation of patients using aircraft.

- **Casualty evacuation (CASEVAC)** is the movement of a casualty from the point of injury to medical treatment by nonmedical personnel. Casualties transported under these circumstances may not receive en route medical care. Typically, this involves a helicopter returning from the battlefield.
- **Medical evacuation (MEDEVAC)** is the timely, efficient movement and en route care provided by medical personnel to the wounded being evacuated from the battlefield to MTFs using medically equipped vehicles or aircraft. Examples include civilian aeromedical helicopter services and Army air ambulances. This term also covers the transfer of patients from the battlefield to an MTF or from one MTF to another by medical personnel, such as from ship to shore.
- **Aeromedical evacuation (AE)** generally utilizes US Air Force (USAF) fixed-wing aircraft to move sick or injured personnel within the theater of operations (intra-theater) or between two theaters (inter-theater), such as moving a casualty from Afghanistan to Germany. This is a regulated system in which care is provided by AE crewmembers. The AE crews may be augmented with Critical Care Air Transport Teams (CCATTs) to provide ICU level care.
- **En route care** is the maintenance of treatment initiated prior to evacuation and sustainment of the patient’s medical condition during evacuation.

Medical Considerations for Patients Entering the Medical Evacuation System

<table>
<thead>
<tr>
<th>Medical Considerations/Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical evacuation request includes requirement for surgical equipment and/or providers.</td>
</tr>
<tr>
<td>Patient is sufficiently stabilized for the anticipated mode and duration of</td>
</tr>
</tbody>
</table>
travel.
- Patient’s airway and breathing are adequate for movement.
- Patient’s IV lines, drainage devices, and tubes are fully secured and patent.
- Patient at high risk for thoracic barotrauma should be considered for prophylactic chest tube placement before prolonged aeromedical evacuation.
- Heimlich valves on chest tubes are functioning.
- Foley catheters and nasogastric tubes are placed and allowed to drain.
- Patient is covered securely with both a woolen blanket and an aluminized blanket for air transport, cold environment, or postoperative hypothermia.
- Three litter straps are used to secure the patient to the litter.
- Personal effects and all medical records accompany the patient.

- Evacuation of a patient is initiated by the originating/sending physician according to established procedures. Patient administration personnel normally provide the administrative details and coordination required to accomplish the evacuation. Due to differences in the type of evacuation assets used and their effect on the patient’s medical condition (eg, flying in the pressurized cabin of an aircraft), requests to transport patients via the USAF AE system must also be validated for evacuation by the theater validating flight surgeon.
- For patients evacuated from Role 2 MTFs or Forward Surgical Teams (FSTs), the brigade surgeon (or designee) determines the evacuation precedence for all patients requiring evacuation from that facility. This is done in consultation with the FST’s chief surgeon and/or senior nurse. When a patient is readied for evacuation from the FST by USAF assets, the supporting Patient Movement Requirements Center (PMRC) should be contacted at the earliest possible time. This allows the PMRC sufficient time to coordinate airlift and patient movement item requirements.

Implications of the Aviation Environment
- General considerations prior to transport.
 - Due to altitude effects, restricted mobility, limited staffing en route, and unpredictable evacuation times, the referring physician should tailor vital signs monitoring requirements and frequency of wound and neurovascular checks.
 - Some therapies that might not be required in a fixed MTF are appropriate for AE.
 - For example, patients with significant medical or surgical conditions should have Foley catheters, nasogastric tubes, provisions for IV pain medications, and extended duration IV antibiotics.
Consider liberal use of fasciotomies/escharotomies. Consider securing the airway with a prophylactic endotracheal tube. Wounds dressed for delayed primary closure. Unless directed otherwise, the AE crew does not routinely redress wounds. However, if a patient develops fever or sepsis en route, wounds must be inspected. Casts must be bivalved. If the cast is over a surgical wound site, “window” the cast to allow for tissue expansion and emergency access. Document neurovascular checks prior to and frequently during flight.

- **Decreased barometric pressure.**
 - The volume of a gas bubble in liquid doubles at 18,000 feet above sea level. Cabin pressures in most military aircraft are maintained at altitudes between 8,000 and 10,000 feet. If an aircraft has the capability, the cabin altitude can be maintained at lower levels, but this will significantly increase flight time and fuel consumption.

- **Consider cabin altitude restriction (CAR) for the following:**
 - Penetrating eye injuries with intraocular air.
 - Free air in any body cavity.
 - Severe pulmonary disease.
 - Decompression sickness and arterial gas embolism require CAR at origination field altitude. Destination altitude should not be higher than origination altitude. Transport on 100% oxygen (by aviator’s mask if available).

- **Pneumothorax:** Chest tube required for all pneumothoraces. A Heimlich valve or approved collection system must be in place prior to patient transfer to the flight line.

- **Air Splints:** Should not be used if alternative devices are available. Because air expands with altitude, air splints require close observation and adjustments during flight.

- **Ostomy Patients:** Vent collection bags to avoid excess gas dislodging the bag from the stoma wafer. Use a straight pin to put two holes in the bag above the wafer ring.

- **Decreased Partial Pressure of Oxygen:** Ambient partial pressure of oxygen decreases with increasing altitude. At sea level, a healthy person has an oxygen saturation of 98%–100%. At a cabin altitude of 8,000 feet, this drops to 90%, which corrects to 98%–100% with 2 L/min of oxygen.

- **Neurosurgical Patients:** Hypoxia may worsen neurological injury. Adjust ventilator settings to meet increased oxygen demands at altitude.

- **Acceleration Stress:** Traumatic brain injury patients can experience transient marked increases in intracranial pressure during takeoff or landing. Patient positioning onboard the aircraft helps minimize this risk (head forward on takeoff, head aft on landing).

- **Thermal Stress:** Plan for cabin temperature changes from 15°C (59°F) to
25°C (77°F) on winter missions, and from 20°C (68°F) to 35°C (95°F) on summer missions. Normothermia should be maintained by using approved devices.

- **Noise:** Exposure to noise can produce problems with communication and patient evaluation (auscultation is impossible—use noninvasive blood pressure monitoring and/or an arterial line). Provide the patient hearing protection. Audible medical equipment alarms are useless.

 - Decreased humidity: Airplanes have very low cabin humidity at altitude. Evaporative losses will increase; therefore, patients will require additional fluids, especially those with large burns and those at risk for mucous plugging.

- **Patient movement in nuclear, biological, and chemical (NBC) environments:**

 - Nuclear and chemical casualties must be externally decontaminated and time allowed for off-gassing of residual chemical agent.

 - Movement of biological casualties varies by the nature of the agent, its mechanism of transmission, and the period of communicability during the course of illness.

 - Any NBC AE movement may be delayed due to the following:
 - Aircraft decontamination time.
 - Availability of noncontaminated aircrew.
 - Cohorting of similarly exposed patients.
 - Quarantinable diseases (eg, plague and smallpox) require special approval (command and diplomatic) before AE.
 - Chemically or radiologically contaminated casualties must be decontaminated before entering the AE system unless the theater and USTRANSCOM commanders direct otherwise.

Medical Evacuation Precedences

- Depending on the service, the type of evacuation assets used, and the evacuation environment, the timeframes for effecting evacuation differ. Refer to Table 4-1.

- **The USAF AE system:** The Air Force’s AE system requires the availability of a secure landing strip, which can support the fixed-wing platforms that are used to move casualties. AE is a regulated, in-transit visible system utilizing a variety of opportune aircraft with dedicated medical crews and equipment, primarily C-130, KC-135, and C-17. The medical crews are made up of flight nurses, aeromedical technicians, and medical attendants trained to perform routine care to stable patients during transport. This system is not designed as a primary/scene response team.

 - AE personnel and equipment for inflight supportive patient care and flight line support operations.

 - Organic communication network for medical facilities and airlift C2
• Aeromedical Evacuation Liaison Team (AELT): 4- to 6-person communication team, usually co-located with an MTF, to coordinate requests with the AE system.

Table 4-1. Evacuation Precedences*

<table>
<thead>
<tr>
<th>Movement Precedence</th>
<th>Army, Navy, Marines (MEDEVAC)</th>
<th>Air Force (AE)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent</td>
<td>Within 1 h</td>
<td>ASAP</td>
<td>Immediate AE to save life, limb, or eyesight</td>
</tr>
<tr>
<td>Priority</td>
<td>Within 4 h</td>
<td>Within 24 h</td>
<td>Prompt medical care not available locally</td>
</tr>
<tr>
<td>Routine</td>
<td>Within 24 h</td>
<td>Within 72 h or next available mission</td>
<td>Condition is not expected to deteriorate significantly while awaiting flight</td>
</tr>
</tbody>
</table>

AE: aeromedical evacuation; ASAP: as soon as possible; MEDEVAC: medical evacuation.

*Timeline may vary based on patient requirements and logistical constraints.

• Aeromedical Staging Facilities (ASFs), generally located at major transit points, manage the administrative processing and staging, providing limited medical care of casualties entering or transiting the AE system. Patients are normally held only for 2–6 hours prior to evacuation.

• ASFs range in size/capability from small units deployed in support of Special Operation Forces to 100-bed facilities.

• Reporting a patient for AE: Originating physician consults with local flight surgeon to determine the en route care plan and timing of evacuation.

Due to the complexity of the aeromedical evacuation system, physicians must indentify points of contact (local flight surgeons, the Aeromedical Evacuation Liaison Team, aeromedical staging elements, and the Patient Movement Requirements Center), verify and test lines of communication, and rehearse patient evacuation drills and procedures before the actual need arises.

• Patient stability: Patients validated for transport by AE must be stabilized as completely as possible prior to evacuation (airway secured, hemorrhage controlled, shock treated, and fractures immobilized).
 ◦ Communicate the condition, AE category (ambulatory or litter), and movement precedence (see Table 4-1) of the patient to the PMRC, as
communications assets allow. See Table 4-2.

Table 4-2. Patient Movement Requirements Center Contact Information

<table>
<thead>
<tr>
<th>PMRC</th>
<th>Commercial Telephone Number</th>
<th>Military Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global (Scott AFB, Illinois)</td>
<td>1-800-303-9301 or 1-800-874-8966</td>
<td>DSN 779-4200 or 8184</td>
</tr>
<tr>
<td>EUCOM Theater (Ramstein AFB, Germany)</td>
<td>011-49-6371-47-2264 or 2235</td>
<td>DSN 314-480-2264 or 2235</td>
</tr>
<tr>
<td>PACOM Theater (Hickam AFB Hawaii)</td>
<td>808-448-1602</td>
<td>DSN 315-448-1602</td>
</tr>
</tbody>
</table>

- To ensure optimum care, communicate with the accepting physician, and provide diagnosis, care rendered, and subsequent medical care plan (next 24–48 hours).
- Ensure that the patient has adequate quantities of supplies and medications for duration of transfer (at least 24 hours intra theater and 48 hours inter theater).
- **Local flight surgeon responsibilities.**
 - Authority for determining whether patients are physiologically ready for air transport.
 - Resource for AE system information, communication, and coordination (Table 4-3).
- **Request versus requirement:** AE requests and patient movement requirements are different. Physicians at originating MTFs submit requests for movement, timing, destination, suggested support therapies, etc. Only the validating flight surgeon (usually located at PMRC; not the local flight surgeon) and the PMRC can validate those requests, which then become AE requirements.

Table 4-3. The Aeromedical Evacuation Process

<table>
<thead>
<tr>
<th>Activity</th>
<th>Location Where the Activity Occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request for AE mission (see end of chapter for format)</td>
<td>Originating physician</td>
</tr>
<tr>
<td>Validation for AE</td>
<td>PMRC (establishes AE requirement)</td>
</tr>
<tr>
<td>Clearance to move by air</td>
<td>MTF (referring physician and local Flight Surgeon)</td>
</tr>
</tbody>
</table>
• **Validation versus clearance for USAF AE.**
 - AE **clearance** is a medical care event; **validation** is a logistical event.
 - **Clearance** is a decision between the referring physician and the local flight surgeon, addressing:
 - Description of the medical condition of the patient.
 - Probability that the patient can survive transit through an aviation environment.
 - What the patient needs to make the trip safely.
 - En route medical capability requirements.

• **Key steps for USAF AE patient request.**
 - Contact local flight surgeon and AE liaison for clearance consultation.
 - Determine the patient’s AE category, based on diagnosis and ability to self-help in an emergency during flight.
 - Determine need for CCATT (see next page). The CCATT adds an additional level of support to the AE system for movement of *stabilized* patients who require a higher level of medical therapy or who have the potential to experience significant deterioration during movement. The CCATT physician is the clinical authority and, with the other team members, is responsible for documenting and providing care. CCATT members may be called on to consult and/or assist in the care of other patients.
 - A five-person burn transport team can augment the AE system as required for inhalation injury and/or severe burns.
 - Determine if special requirements exist for transport (eg, CAR and splinting).
 - Determine patient movement items required (eg, ventilators, pulse oximeters, among others). Flight surgeon must verify that all items accompanying the patient are cleared for in-flight use.
 - Determine the patient’s movement precedence.
 - Submit request.

Selection of the CCATT Patient

When deciding if a casualty requires the expertise of a CCATT, the provider needs to assess what requirements the casualty will have during transport.

Basic Definition of a CCATT Patient

Patients requiring CCATT transport include those in need of intensive nursing care, constant hemodynamic monitoring, mechanical ventilation, frequent therapeutic interventions, or other medical or surgical interventions vital to sustain life, limb, and eyesight during movement of the patient.
To ensure mission success, a CCATT should be used to move the patient if any of the criteria listed below are present.

Use a CCATT if the patient:
- is intubated
- requires aggressive fluid administration or has received more than 10 units of blood products in the past 24 hours
- requires blood replacement or vasopressor support
- requires invasive hemodynamic or intracranial monitoring
- requires frequent suctioning or nebulizer treatments
- has an increasing oxygen requirement
- has undergone a vascular reconstruction
- has unstable angina
- has a condition requiring the need to initiate/continue IV drips for pain relief, anticoagulation, etc, while in flight
- has an unstable spine fracture
- requires the Vacuum Spine Board for movement
- has altered mental status
- will require electrolyte replacement and monitoring in flight.

If there is a question about whether a patient without any of the previously described criteria should be moved via CCATT, the sending provider should contact the theater validating flight surgeon. Consultation with all providers involved is fundamental in ensuring that the appropriate resources are used to move the patient safely.

Critical Care Air Transport Teams (CCATTs)

Intensivist Physician
- Capable of providing short-term life support, including advanced airway management, ventilator management, and limited invasive (nonoperative) procedures.
- Trained in critical care medicine, general surgery, anesthesiology, or emergency medicine.

Critical Care Nurse
- Experienced in managing patients requiring mechanical ventilation, invasive monitoring, and hemodynamic support.

Cardiopulmonary Technician
- Experienced in the management of patients requiring mechanical ventilation and invasive monitoring.
- Experienced in troubleshooting ventilatory support, portable laboratory devices, and monitoring systems.
After it is determined that a casualty requires the expertise of a CCATT, the next step lies in the preparation of that casualty for transport. The most important aspect in ensuring that the movement of a critically ill or injured patient is successful lies in the preparatory phase. To accomplish this task, the sending facility must make certain that all aspects of the Intertheater Transport Checklist are followed (see previous page).

Upon arrival of the CCATT, a one-on-one report should be given to the team, thus ensuring that any changes of patient condition have been addressed. Whenever possible, it is preferred that the sending physician directly speaks to the CCATT physician prior to departure. This will ensure that a smooth transition of care is accomplished.

Humanitarian Transport Requests
- The process of arranging routine humanitarian evacuations out of theater can take more than 6 months.
- Appropriate patient selection is critical. Ideally, these patients have a single,
• Fixable, stable problem.
• The lack of suitable host nation care must be confirmed and documented. Regional care is preferred over transport to the continental United States (CONUS).
• Individual cases for humanitarian evacuation out of theater are unlikely to be successful without a passionate advocate. Personalizing the case with photos and compelling narrative is crucial for success.
• The approval process is complex and requires coordination with the local US embassy or State Department, host nation medical officials, and transit nations’ ministries of foreign affairs or equivalent.
• All evacuated children must have an attendant. Those needing military transport require “Secretary of Defense Designee” status.
• Coordination also includes travel to the receiving medical center once in CONUS, obtaining diplomatic transit clearance while waiting in a third country for ongoing transport and arrangements for return transport. Clearances must cover both the patient and the nonmedical attendant.
• Contact the servicing Patient Movement Request Center early for guidance.

For Clinical Practice Guidelines, go to
Chapter 5

Airway/Breathing

Introduction

Skillful, rapid assessment and management of airway and ventilation are critical to preventing morbidity and mortality. Airway compromise can occur rapidly or slowly and may recur. Frequent reassessment is necessary. Preventable causes of death from airway problems in trauma include the following:

- Failure to recognize the need for an airway.
- Inability to establish an airway.
- Failure to recognize the incorrect placement of an airway.
- Displacement of a previously established airway.
- Failure to recognize the need for ventilation.
- Aspiration of the gastric contents.

Initial airway management at any level, but especially outside of medical treatment facilities. Immediate goal: Move tongue, pharyngeal soft tissues, and secretions out of airway. Until a formal airway is established, place patients in the lateral or prone position (rescue position), unless cervical spine precautions are appropriate in the particular battlefield situation.

- Chin-lift and head tilt.
 - Place fingers under the tip of the mandible to lift the chin outward from face.
- Two-handed jaw thrust.
 - Place both hands behind the angles of the mandible and displace forward. This method can be used on the patient with cervical injury.
- Oropharyngeal airway.
 - Insert oral airway upright if a tongue depressor is used (preferred method).
 - Keep the airway inverted past the tongue, then rotate 180°.
 - Too small an airway will not alleviate the obstruction. Too long an airway may fold the epiglottis caudally, worsening the obstruction.
 - Estimate airway size by distance from corner of the mouth to the ear lobe.
 - Oral airways are not used in conscious patients.
- Nasopharyngeal airway.
 - Pass lubricated nasal airway gently through one nostril.
 - Not used in suspected facial or basal skull injuries.
- Is tolerated by conscious patients.
- Field expedient.
 - Pull tongue forward and safety pin or suture it to the corner of the mouth.
- Cricothyrotomy.

Ventilation
- Ventilate patient with the bag-valve mask.
 - **Bring the face into the mask rather than pushing the mask onto the face.**
 - The chin lift and head tilt are also used during mask ventilation unless they are contraindicated due to cervical spine precautions.

Assess air movement during mask ventilation by observing the rise and fall of the chest, auscultation, absence of a mask leak, compliant feel of self-inflating bag, and stable oxygen saturation.

- If air movement is not achieved, use **two-person mask ventilation** (Fig. 5-1).
 - One person lifts the jaw aggressively at the angles of the mandible; the other holds the mask and ventilates. Alternatively, one person may lift and hold the mandible with both hands, while at the same time holding down the mask on both sides. The other person ventilates the patient.
 - If air movement is still not present, obtain a definitive airway.

Fig. 5-1. Two-person mask ventilation.

- Unsuccessful and aggressive attempts at ventilation may result in inflation of the stomach, placing the patient at increased risk for vomiting and aspiration.

Positive pressure ventilation can convert a simple pneumothorax into a tension pneumothorax.
Perform frequent assessment and have equipment available for needle chest decompression.

Orotracheal Intubation

Rapid Sequence Intubation—Six Steps

1. Preoxygenate with 100% oxygen by mask.
2. Cricoid pressure—(Sellick’s maneuver) until endotracheal tube placement is confirmed and balloon is inflated.
3. Induction agent: etomidate 0.1–0.6 mg/kg IV push.
4. Muscle relaxant: succinylcholine 1.0–1.5 mg/kg IV push.
5. Laryngoscopy and orotracheal intubation.

Consider nasogastric or orogastric tube placement after securing airway.

- Direct laryngoscopy technique.
 - Ensure optimal “sniffing” position is achieved unless contraindicated by cervical spine injury.
 - Open the mouth by scissoring the right thumb and middle finger.
 - Hold the laryngoscope in the left hand and insert the blade along the right side of the mouth, slightly displacing the tongue to the left.

 • **Macintosh** (curved) blade: Advance the tip of the blade into the space between the base of the tongue and the epiglottis (ie, into the vallecula). Apply force at a 30°–45° angle, lifting the entire laryngoscope/blade without rocking it backward (Fig. 5-2).

 ![Fig. 5-2. Use of curved blade laryngoscope.](image)

 • **Miller** (straight) blade: Advance the tip of the blade into the posterior oropharynx, picking up the epiglottis and tongue base anteriorly and laterally, and apply a force vector like that of the Macintosh blade. Avoid rocking the laryngoscope backward (Fig. 5-3).

 ○ Visualize the vocal cords.
 ○ Consider the “BURP” (Backward Upward Rightward Pressure)
maneuver when the laryngoscopic view is poor (Fig. 5-4).

- “BURP” of the larynx was also referred to as external laryngeal manipulation.
- Place the fingers of an assistant onto the larynx with your right hand and manipulate the glottic opening into the field of view.

Fig. 5-3. Use of straight blade laryngoscope.

- Assistant then holds the position for intubation.
- **Eschmann stylet** or Gum Elastic Bougie (Fig. 5-5).
 - Blindly guide the tip of the stylet beneath the epiglottis, then anteriorly through the vocal cords.
 - Advance the bougie deeply. Placement into the trachea results in the sensation of tracheal ring “clicks” and turning of the stylet as it passes airway bifurcations.

Fig. 5-4. BURP (Backward Upward Rightward Pressure) maneuver.
The patient may cough as the stylet passes through the airway.

When passed beyond the trachea, the stylet will stop at a terminal bronchus. If placed into the esophagus, it will pass indefinitely into the stomach without any tactile feedback.

The endotracheal tube (ETT) is guided over the stylet into the airway, and tracheal intubation is confirmed.

- Advance the ETT between the vocal cords, withdraw stylet, and advance the ETT to 20–21 cm at the teeth for adult females and 22–23 cm for adult males. Deeper placement may result in right mainstem intubation.
- Confirm placement of the ETT in the trachea.
- Auscultate over the axilla to ensure that breath sounds are equal.

Avoid making more than three attempts at direct laryngoscopy. Excessive attempts may result in airway trauma and swelling, potentially turning a “cannot intubate” urgency into a “cannot intubate–cannot ventilate” emergency.

Difficult Airway

After three unsuccessful attempts at direct laryngoscopy, abandon the technique and try alternatives.

- Alternative intubation techniques.
 - Lighted stylet or “light wand” intubation.
 - Flexible wand, lighted at the tip, is placed through the ETT.
 - Wand is advanced by tactile guidance into the trachea.
 - Position in trachea is verified by transillumination.
 - The ETT is advanced over the wand.
 - Flexible fiberoptic oral or nasal intubation.
 - Retrograde wire intubation.
 - Rigid fiberoptic intubation (Bullard laryngoscope).
 - Video-assisted laryngoscopy (GlideScope Ranger) is currently a key
Alternative airways.

- May NOT be definitive airways.
- Allow for oxygenation and ventilation when standard airways cannot be placed.
- Supraglottic airway/laryngeal mask airway (LMA).
- Esophageal–tracheal combitube.

- Perform a surgical airway.

Surgical Cricothyrotomy

- Identify cricothyroid membrane (between cricoid ring and thyroid cartilage [Fig. 5-6a]).
- Prep skin widely.
- Grasp and hold trachea until airway is completely in place.
- Make a **vertical SKIN** incision down to the cricothyroid membrane (a no. 10 or no. 11 blade).

![Fig. 5-6. Steps of surgical cricothyrotomy. (a) Identify cricothyroid membrane. (b) Make a horizontal membrane incision. (c) Insert a small, cuffed ETT, 6.0–7.0 inner diameter, to just above the balloon.](image)

- Bluntly dissect the tissues to expose the membrane.
- Make a **horizontal MEMBRANE** incision (Fig. 5-6b).
- Open the membrane with forceps or the scalpel handle.
- Insert a small, cuffed ETT, 6.0–7.0 inner diameter, to just above the balloon (Fig. 5-6c).
- Confirm tracheal intubation.
- Suture the ETT in place and secure it with ties that pass around the neck.
Laryngeal Mask Airway

Do NOT use in penetrating upper airway trauma or central airway obstruction (foreign body).

- Insert blindly without a laryngoscope. The laryngeal mask airway (LMA) rests over the laryngeal inlet.
- Compared to an ETT, the LMA supports less airway pressures and offers less aspiration protection.
- Check the LMA cuff, then deflate it until the down side (inner) surface is smooth and flat; lubricate the pharyngeal (upper) side of the LMA.
- The sniffing position works best, but the LMA may be inserted in different patient positions.
 - Insert LMA (3–4 for women, 4–5 for men) with upper (pharyngeal) side gliding along the hard palate, down and around into the posterior pharynx. This allows proper direction and reduces the chance of cuff folding.
 - Do NOT push the LMA directly back into the mouth. This folds the cuff and prohibits proper placement.
 - Inflate cuff with 20–30 cc of air via syringe. Slight upward movement of the LMA tubing is seen.
 - Secure the LMA.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 6

Hemorrhage Control

The hemorrhage that take[s] place when a main artery is divided is usually so rapid and so copious that the wounded man dies before help can reach him.

— Colonel H. M. Gray, 1919

Stop the Bleeding!

- Hemorrhage is the leading cause of preventable death on the battlefield.
 - 90% of combat fatalities occur forward of a medical treatment facility.
 - 75% of combat fatalities have nonsurvivable injury and 25% have potentially survivable injury. Of those with potentially survivable wounds, 90% die from hemorrhage.
 - Although bleeding is a main cause of death, the vast majority of wounds do not have life-threatening bleeding.

<table>
<thead>
<tr>
<th>UNDER FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Get the patient out of the line of fire — prevent further injury.</td>
</tr>
<tr>
<td>• Control obvious external bleeding once out from under fire.</td>
</tr>
<tr>
<td>• If you must remain under fire, stop external bleeding with use of a tourniquet.</td>
</tr>
<tr>
<td>• Do not endanger the casualty or yourself with unnecessary treatment.</td>
</tr>
<tr>
<td>• Stay engaged in the firefight if necessary.</td>
</tr>
</tbody>
</table>

KEEP YOUR HEAD DOWN

Sites of Hemorrhage

- External.
 - Extremity injury (most common cause of massive external blood loss in combat), scalp, and torso wounds.
 - Usually associated with an open fracture or amputation.
- Internal.
 - Chest, abdomen, pelvis, and closed extremity fractures.
 - High mortality if the casualty is not expeditiously transported and salvage surgical procedures performed.
 - Controlled (hypotensive) resuscitation should be implemented. (See below; also see Chapter 7, Shock, Resuscitation, and Vascular Access.)

Internal Torso Bleeding Requires Surgical Control
Treatment—First Responder

- External hemorrhage from extremity wounds.
 - **Direct pressure** at the site of injury is the most effective and preferred method of hemorrhage control.
 - If direct pressure fails to stop the hemorrhage, it signifies deep, massive, or arterial injury, and will require surgery or advanced hemostatic agents.
 - Hold pressure for at least 5 minutes before looking to see if it is effective.
 - Impaled foreign bodies should not be removed because profuse bleeding may occur.

<table>
<thead>
<tr>
<th>Pitfall: A Bandage Does Not Equal Direct Pressure!</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A bandage may wick blood from the wound without stopping the bleeding.</td>
</tr>
<tr>
<td>- A bandage hides ongoing bleeding.</td>
</tr>
<tr>
<td>- Hemostatic bandages are available on the battlefield to assist in stopping bleeding. (See current TCCC [Tactical Combat Casualty Care] Guidelines.)</td>
</tr>
</tbody>
</table>

- **Elevation** of the extremity will decrease most bleeding.

- **Point compression of the proximal artery.**
 - May help slow bleeding while attempting to gain better control at the wound site.
 - May require compression at the pressure point for up to 20 minutes to provide hemostasis.
 - Table 6-1 shows the recognized pressure points.

- **No blind clamping.**

Table 6-1. Recognized Pressure Points

<table>
<thead>
<tr>
<th>Bleeding Site</th>
<th>Hand</th>
<th>Forearm</th>
<th>Arm</th>
<th>Leg</th>
<th>Thigh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artery</td>
<td>Radial/ulnar</td>
<td>Brachial</td>
<td>Axillary</td>
<td>Popliteal</td>
<td>Femoral</td>
</tr>
<tr>
<td>Pressure point</td>
<td>Wrist</td>
<td>Inner upper arm</td>
<td>Axilla</td>
<td>Behind knee</td>
<td>Below groin crease</td>
</tr>
</tbody>
</table>

- **A tourniquet** should be applied if previous techniques fail.
◊ Use a tourniquet early, rather than allow ongoing blood loss.
◊ Rapid method to secure hemorrhage control.
◊ Does not require constant attention; allows first responder to care for others—extends resources.
◊ Tourniquets should not be removed until the hemorrhage can be reliably controlled by advanced hemostatic agents or until arrival at surgery.

Tourniquet May Be the First Choice in Combat

◊ Tourniquet placement on the forearm or leg may not compress the vessels, which lie between the double long bones. Tourniquets on the upper extremity should be placed on the upper arm. If bleeding from the lower extremity is not controlled by a tourniquet on the leg, it should be moved to the thigh, where the vessel may be more easily compressed.

◆ A second tourniquet may need to be added to provide better hemostatic control.

Pitfalls of the Tourniquet

Risk–benefit Decision: Do not avoid use of a tourniquet in order to save a limb and then lose a life!

◆ **Clamping vessels:** If there is continued bleeding and a damaged vessel can be readily identified, a hemostat may be used to clamp the visualized vessel.

◆ **Limb splints** will decrease bleeding associated with fractures and soft-tissue injury by aligning, stabilizing, and returning the limb to length.

◆ **Scalp bleeding:** Can be significant due to the rich vasculature of the scalp.
 ◊ Responds to direct pressure.
 ◊ But difficult to apply and maintain direct pressure.
 ◊ Compression dressings must be applied if you cannot provide ongoing direct pressure.
 ◊ Requires circumferential head application.
 ◊ Vertical mattress suture closure sometimes is necessary to control bleeding scalp edges.
 ◊ A readily identified bleeding vessel can be clamped, but the wound should generally not be explored.
 ◊ Avoid pushing fragments into the brain when applying
pressure, but control hemorrhage even at the expense of exposed brain.

◊ Protection of exposed brain with nonadherent gauze or plastic can minimize injury.

♦ **Internal bleeding.**

◊ Blood loss into the abdomen or chest cannot be controlled in the field and requires immediate evacuation for salvage or definitive surgery.

◊ Stabilization of pelvic fracture with a pelvic binder or wrapping the pelvis tightly with a wide strap (such as a folded sheet) may reduce pelvic bleeding.

◊ Open torso injuries: If direct pressure does not stop the hemorrhage, consider inserting a tamponade with a balloon (Foley) catheter into the wound. Then, with the balloon inflated, pull back to compress the bleeding site.

Dressings, Bandages, Hemostatic Agents, and Controlled Hypotension

Dressings promote hemostasis, protect wounds from mechanical injury and contamination, immobilize tissues, and provide physical and psychological support to the patient.

- **Application of dressings and bandages.**
 - Control all bleeding.
 - Assess neurological status and circulation of extremity before and after applying a dressing or bandage.
 - Immobilize suspected fractures.
 - Keep dressing as clean as possible.
 - Dressings should cover the entire wound.
 - Bandages should cover the entire dressing.
 - Avoid skin-to-skin contact.
 - Leave fingers and toes exposed.
 - **Reinforcement.**
 - If at all possible, **DO NOT** remove the first dressing.
 - If the dressing becomes thoroughly saturated, reevaluate the wound for a source of bleeding amenable to direct pressure and consider advanced hemostatic agents or a proximal tourniquet. Blood loss into the dressing can be estimated.
 - Coagulopathy: Blood loss, massive fluid resuscitation, and a drop in body temperature may lead to an inability to form clots.
 - Keep patient warm (above 34°C).
 - Use warm fluids.
- Use crystalloid fluids sparingly.
- Transfuse with component therapy or fresh whole blood in accordance with current Clinical Practice Guidelines (CPGs).

- Hemostatic agents: New products and bandages are available in several forms:
 - Dressings: Impregnated with hemostatic agents.
 - Injectables.
 - Intravenous: Augment clotting cascade of body.
 - Intracavitary: Through wounds to control internal bleeding.
 - Two-component “glues.”
 - If an advanced hemostatic agent is used after a tourniquet has been placed, the tourniquet may be carefully removed after the agent has achieved hemostasis and the wound observed for hemorrhage. If hemorrhage recurs, return to the tourniquet.

- See current CPGs for a list of hemostatic agents.

Hemostatic Agents

- Currently, TCCC (Tactical Combat Casualty Care) recommends Combat Gauze. See current TCCC guidelines.
- If standard measures, such as pressure dressings, do not control bleeding, it is recommended that a tourniquet be used and that the first agent be Combat Gauze.
- If the bleeding is external and not at a site where a tourniquet can be applied, Combat Gauze can be used if conventional pressure dressings fail.
- This product is to be used only on external sources of hemorrhage.
- Blood and clot should be wiped out of the wound prior to application.
- Remember, pressure must be applied for 3–5 minutes at the bleeding site, after application of a hemostatic dressing.

Field Hemostatic Dressings—Considerations

- Do not use on minor injuries.
- Use on internal wounds is not yet recommended.
- Must apply pressure to the bleeding site after application.
- Effectiveness is limited if Combat Gauze is not in contact with the bleeding source in a deep wound.

- **Controlled Resuscitation** (Permissive Hypotension).
 - Resuscitation is a method of hemorrhage control. The needs of
organ perfusion must be carefully balanced against the risk of increased bleeding as blood pressure rises. Excessive fluid resuscitation may increase bleeding and rebleeding. Prior to definitive hemorrhage control, a lower than normal blood pressure may be acceptable. Small volumes of resuscitation fluid are still required in those casualties with decreased mentation due to hypotension (ie, decreased or absent radial pulse).

Reference

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 7

Shock, Resuscitation, and Vascular Access

Introduction

The goal of resuscitation is to maintain adequate perfusion. Resuscitation of the wounded combatant remains a formidable challenge on the battlefield. Routine initial resuscitation using 2 L of crystalloid through two large-bore IVs is not appropriate in all situations. In fact, blood transfusions may be part of the initial fluid resuscitation of casualties who bled or who were at high risk for ongoing bleeding. **The vast majority of casualties do not need any IV fluid resuscitation prior to arrival at a forward medical treatment facility.**

This chapter will briefly address shock (including recognition, classification, treatment, definition, and basic pathophysiology), review initial and sustained fluid resuscitation, summarize currently available fluids for resuscitation, and describe vascular access techniques.

Recognition and Classification of Shock

Shock is a clinical condition marked by inadequate organ perfusion and tissue oxygenation, manifested by poor skin turgor, pallor, cool extremities, capillary refill greater than 2 seconds, anxiety/confusion/obtundation, tachycardia, weak or thready pulse, and hypotension. Lab findings include base deficit >5 and lactic acidosis >2 mmol/L.

- **Hypovolemic shock:** Diminished volume resulting in poor perfusion as a result of hemorrhage, diarrhea, dehydration, and burns. This is the most common type of shock seen in combat casualties (Table 7-1).

> Hypotension is a late finding in shock, occurring after 30%–40% blood volume loss. Earlier signs are tachycardia, decreased pulse pressure, and mental status changes. However, even these earlier signs may not be readily apparent in military casualties who generally have a greater propensity for physiological compensation secondary to physical conditioning.

<table>
<thead>
<tr>
<th>Size Designation: Blood Loss (cc):</th>
<th>Class I <750</th>
<th>Class II 750–1,500</th>
<th>Class III 1,500–2,000</th>
<th>Class IV >2,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood volume*</td>
<td><15%</td>
<td>15%–30%</td>
<td>30%–40%</td>
<td>>40%</td>
</tr>
</tbody>
</table>

Table 7-1. Clinical Correlates in Hypovolemic Shock
BP: blood pressure; CNS: central nervous system; RR: respiratory rate; UOP: urine output.

*Blood volume is approximately 7% (e.g., a 70-kg patient has a blood volume of 4,900 mL).

- **Cardiogenic shock**: Pump failure from intrinsic cardiac failure or obstructive cardiac dysfunction from a tension pneumothorax (unilateral absence breath sounds + distended neck veins) or cardiac tamponade (distended neck veins).

- **Distributive shock**: Poor perfusion due to loss of vascular tone.
 - **Neurogenic shock**: Bradycardia with hypotension, seen with spinal cord injury T6 and above due to loss of sympathetic tone and unopposed parasympathetic stimulation with resultant vasodilation.
 - **Septic shock**: Fever, hypotension, tachycardia, and warm extremities from massive vasodilation related to infection.

Treatment of Hypovolemic Shock—Control Bleeding!

The goal in the treatment of shock is to restore tissue perfusion and oxygen delivery (dependent on hemoglobin, cardiac output, and oxygenation).

- Secure the airway and administer oxygen for SaO₂ <92%.
- Diagnose and treat tension pneumothorax.
- Control obvious bleeding and assess for occult hemorrhage.
- Assess circulation and establish IV access.
 - Consider cardiac tamponade, even if there are no distended neck veins.
- Administer IV fluids.
 - Hemorrhagic shock: Resuscitate initially with any fluid available. But strong consideration must be given for early blood product transfusion, particularly in those casualties at risk for a massive transfusion (>10 units of PRBCs [packed red blood cells] in 24 hours).

 - Physiological/laboratory predictors of massive transfusion include:
 - Systolic blood pressure <110.
 - Heart rate >105.
 - Hematocrit <32%.
 - pH <7.25.
 - 3 of 4 risk factors = 70% risk massive transfusion.
4 of 4 risk factors = 85% risk massive transfusion.

Injury patterns associated for risk of massive transfusion include:

- Truncal/axillary/neck/groin bleeding not controlled by tourniquet or hemostatic dressings.
- Multiple amputations.
- Large soft-tissue injuries with uncontrolled bleeding.
- Large hemothorax.
- Large hemoperitoneum.

These patients should be immediately resuscitated with blood products (red blood cells: fresh frozen plasma: platelets) in a 1:1:1 ratio or consider fresh whole blood if full component therapy not available.

See JTTS (Joint Theater Trauma System) Clinical Practice Guideline “Damage Control Resuscitation.”

Types of IV fluids.

- Lactated Ringer’s (LR): 1,000 mL expands intravascular volume by only ~250 mL within 1 hour after infusion. Normal saline should be discouraged.
- Hextend (500 mL, Hetastarch 6% + a physiological balanced crystalloid carrier, including lactate buffer and glucose) expands intravascular volume by ~800 mL in 1 hour, is functionally equivalent to three bags of LR, and is sustained for at least 8 hours. May repeat once for a total of 1,000 mL.
- Hypertonic saline (HTS) 7.5% results in the same physiological response with one-eighth the volume of LR or saline. Two infusions of 250 cc can be used. Although this recommendation has been made by the Institute of Medicine (in Washington, DC) and two military consensus groups, HTS 7.5% is not commercially available. HTS 3% and HTS 5% can be used instead and are formulary stock items.

Caveat-Hextend and HTS are effective primarily by shifting extracellular volume into intravascular space. They may be less effective if administrated in casualties with significant dehydration and require supplementation with judicious use of crystalloid.

- Isolated neurogenic shock.

- Intravascular resuscitation with crystalloid to maintain systolic mean arterial pressure >80 mm Hg or systolic blood pressure (SBP)
Recommend that crystalloid fluid resuscitation be used judiciously in this situation, since volume overload is associated with increased risk of pulmonary edema.

- Add a vasopressor after appropriate intravascular volume challenge (generally 2–3 L) to address the loss in vascular tone.
 - Phenylephrine (50–300 µg/min).
 - If bradycardic, consider dopamine (2–10 µg/kg/min).
- Septic shock.
 - Initial resuscitation (first 12 hours).
 - Targets:
 - Mean arterial pressure ≥65 mm Hg or SBP ≥90.
 - Central venous pressure 8–12 mm Hg.
 - Urine output ≥0.5 mL/kg/h.
 - Central venous or mixed venous oxygen saturation ≥70%.
 - Begin intravenous antibiotics within the first hour of recognition of severe sepsis with broad-spectrum coverage.
 - Add a vasopressor after appropriate intravascular volume challenge usually until central venous pressure was 8–12 (generally up to 5 L crystalloid and/or colloid).
 - Norepinephrine initial dose 8–12 µg/min, then titrate to effect at 2–4 µg/min. (Sepsis [weight-based dosing] 0.01–3 µg/kg/min could be as much as 0.7–210 µg/min in 70-kg patient.)
 - Vasopressin 0.04 units/min (may titrate down for effect; do not titrate above maximum: 0.04 units/min).
 - Institute early acute lung injury/acute respiratory distress syndrome mechanical ventilation measures with low tidal volumes (5–7 cc/kg lean body mass) and end-inspiratory plateau pressures <30 cm H₂O.
- Subsequent therapy.
 - Overall fluid balance target after 12 hours of resuscitation is between 3–12 L. Greater than 12 L positive balance associated with increased mortality.
 - Consider blood transfusion if hemoglobin <7 to target hemoglobin of 7.0–9.0 g/dL.
Reassess antimicrobial regimen 48–72 hours after starting treatment with the objective of narrow-spectrum antibiotics.

- Based on response to fluids, casualties will fall into three groups: responders, transients, and nonresponders.
 - **Responders**: Casualties with a sustained response to fluids may have had significant blood loss, but have stopped bleeding. However, they may still require definitive surgery.
 - **Transient** and **nonresponders** are continuing to bleed. They need immediate surgical intervention.

- Start blood product transfusion as soon as possible, with a target goal ratio of 1:1:1 (PRBCs:fresh frozen plasma [FFP]:platelets).
- For nonresponders, fluids may be given to keep the casualty alive, but one should not attempt to restore pressure to normal. Consideration should be taken into account of the futility of the resuscitation, depending on the tactical scenario.
- Follow **controlled resuscitation** guidelines as presented in this chapter.

Exsanguinating hemorrhage is the cause of most preventable deaths during war. Combat casualties in shock should be assumed to have hemorrhagic shock until proven otherwise.

- Vasopressors have NO role in the initial treatment of hemorrhagic shock.
- **Resuscitation fluid selection.**
 - The ideal fluid for resuscitation is still debated, despite decades of research that began during World War I (Table 7-2).
 - Blood product transfusions should be considered early in the resuscitation, particularly in patients who have lost 30% or more of their blood volume. Blood products may also be necessary in patients who have not reached this threshold, but who have ongoing blood loss or who are at high risk of ongoing bleeding. Fresh whole blood therapy should be considered at levels of care where component blood product therapy (ie, PRBCs, FFP, platelets) is inadequate to meet the target goal ratio of 1:1:1.

Concept of Controlled Hypotensive Resuscitation / Permissive Hypotension

- Raising the blood pressure with fluid resuscitation may dislodge established clots leading to continued blood loss. Prior to establishing definitive hemorrhage control, use controlled resuscitation to achieve and maintain adequate perfusion as demonstrated by at least one of the following prioritized goals:

<table>
<thead>
<tr>
<th>Table 7-2. Intravascular Resuscitation Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Crystalloids</td>
</tr>
<tr>
<td>Saline</td>
</tr>
<tr>
<td>Ringer’s lactate</td>
</tr>
<tr>
<td>Hypertonic saline</td>
</tr>
<tr>
<td>3%–5%</td>
</tr>
<tr>
<td>7.5%*</td>
</tr>
<tr>
<td>HTS–colloid combinations*</td>
</tr>
<tr>
<td>HTS dextran*</td>
</tr>
<tr>
<td>HTS</td>
</tr>
<tr>
<td>Hetastarch*</td>
</tr>
<tr>
<td>Colloids</td>
</tr>
<tr>
<td>Albumin</td>
</tr>
<tr>
<td>Artificial colloids</td>
</tr>
<tr>
<td>Dextran</td>
</tr>
<tr>
<td>6% Hetastarch (Hextend, Hespan)</td>
</tr>
<tr>
<td>10% Pentastarch*</td>
</tr>
<tr>
<td>Gelatin-based colloids*</td>
</tr>
<tr>
<td>Oral rehydration fluids</td>
</tr>
<tr>
<td>Dehydration-controlled hemorrhage</td>
</tr>
<tr>
<td>Burns</td>
</tr>
<tr>
<td>Blood</td>
</tr>
<tr>
<td>Hemorrhage—type O universal donor</td>
</tr>
<tr>
<td>Artificial blood</td>
</tr>
<tr>
<td>Hemoglobin-based</td>
</tr>
<tr>
<td>Fluorocarbon-based</td>
</tr>
</tbody>
</table>

FDA: Food and Drug Administration; HTS: hypertonic saline.

*Not FDA approved.
Regains consciousness (follows commands).
- Palpable radial pulse.
- SBP ~90 mm Hg.
- MAP (mean arterial pressure) ~60 mm Hg.

Controlled resuscitation (permissive hypotension) is NOT a substitute for definitive surgical control. It is an attempt to keep a critically injured casualty alive until definitive treatment.

- Endpoints of resuscitation.
 - Following definitive hemorrhage control, more traditional endpoints of resuscitation include:
 - Blood pressure: SBP >110–120 mm Hg, MAP >65–70 mm Hg.
 - Urine output: >0.5 mL/kg/h (approximately 30 mL/h).
 - Correction of acidosis by achieving base deficit <2 or serum lactate <2 mmol/L.

- Hypothermia: It is important to maintain normal body temperature. Fluids, blood products, and casualty care areas must be warmed. Casualties frequently arrive to the facility hypothermic. Keep casualties covered when on litters, radiograph tables, and operating tables. External warmers should be used in all casualty care areas from initial emergency area through operating room and ICU. Hypothermia is much easier to prevent than it is to treat. See further discussion of hypothermia in Chapter 12, Damage Control Surgery. Also see JTTS Clinical Practice Guideline “Hypothermia Prevention.”

Vascular Access
- Vascular access is a critical early step in the management of trauma.
- Peripheral access should be attempted first; if unsuccessful, consider intraosseous (IO) device placement for initial resuscitation, followed by alternatives such as percutaneous central line (ie, subclavian, internal jugular, femoral veins) or “cutdowns” (saphenous vein either at the groin or ankle).

Subclavian Vein Access or Internal Jugular Venipuncture
- Place the casualty supine in the Trendelenburg position (15° head down).
- Prep and drape subclavian/jugular area. Sterile gloves must be worn. Use central line access kit.
 - Subclavian line.
 - With an index finger placed at the sternal notch, the thumb is placed at the junction of the medial and middle third of the clavicle.
 - 1% lidocaine is infiltrated into the skin, subcutaneous tissue, and
periosteum of the clavicle.

- Introduce a large caliber needle with an attached 5-mL syringe at the junction of the middle to lateral portion of the clavicle. Insert with the bevel of the needle up, directing the needle toward the contralateral clavicular head. Keep the needle horizontal to avoid a pneumothorax.

- While aspirating, slowly advance the needle underneath the clavicle.

- Jugular vein line.

 - Turn the casualty’s head 45° toward the contralateral side to expose the neck. Position must be altered to neutral position if concern for cervical spine injury.

 - Identify the apex of the anterior cervical triangle formed by the heads of the sternocleidomastoid muscle to locate the carotid artery.

 - Palpate the carotid artery and stay lateral with your venipuncture.

 - Introduce a large-bore needle on a 10-mL syringe at a 45° angle into the apex of the triangle, lateral to the carotid pulse.

 - Carotid puncture: Immediately withdraw the needle and place pressure on the site for a minimum of 5 minutes.

 - Advance the needle caudally, parallel to the sagittal plane and at a 30° posterior angle (eg, toward the ipsilateral nipple).

 - When free flow of venous blood appears, advance the needle an additional 4 mm (the length of the needle bevel), then remove the syringe and quickly cover the hub of the needle to prevent air embolism.

 - If air or arterial blood appears, stop immediately. Withdraw needle immediately and place pressure at the site for at least 5 minutes.

- If no venous blood returns after advancing 5 cm, slowly withdraw the needle while aspirating. If this fails, redirect the needle.

- Subclavian vein or internal jugular vein catheter insertion.

 - Once the needle is in the vein, introduce the “J” wire through the needle (Seldinger technique). The wire should pass with minimal resistance. If the wire does not pass easily, withdraw the entire apparatus and reattempt line placement.

 - Remove the needle.
• Enlarge the puncture site with a scalpel and dilator.
• Pass the catheter over the wire while holding the wire in place to a depth of 18 cm on the left and 15 cm on the right for subclavian, and to a depth of 9 cm on the right and 12 cm on the left for jugular vein; then remove the wire.
• Aspirate from all ports, flush all ports, suture in place, apply antibiotic ointment, dress area, secure tubing, and label date of insertion.
• Chest radiograph to ensure line position and rule out pneumothorax.

Greater Saphenous Vein Cutdowns
- Contraindications.
 • Deep vein thrombosis or severe ipsilateral lower extremity trauma.
- Procedure.
 • Expose, prep, and drape ankle or femoral site.
 • For ankle, administer local anesthetic proximal to the medial malleolus.
 • Make a superficial transverse incision through the skin over the entire width of the flat tibial edge (~3 cm) in the area of the saphenous vein.
 • Using a curved hemostat, isolate the greater saphenous vein from the nerve and underlying bone.
 • Using the open hemostat as a platform, cut a 1–2 mm venotomy in the anterior surface of the vein with a no. 11 blade (Fig. 7-1a).
 • Place the intravenous tubing (previously beveled) or angiocatheter at least 4 cm into the vein (may require use of a vein introducer) (Fig. 7-1b).

![Fig. 7-1](image)

Fig. 7-1. Saphenous vein cutdown.

• Secure the catheter with a proximal silk ligature and tie off the distal
Secure the catheter with a suture.
Apply a clean dressing.
The femoral procedure is essentially the same, with the site being a handbreadth below the inguinal ligament, medial to the midline of the thigh. After skin incision, the finger bluntly dissects through the fat to the fascia. Hook the finger and lift, and the vein comes up with it.

- Cutdown can also be performed on the common femoral veins, the jugular veins, and on veins of the forearm.

Intraosseous Infusion

- Contraindications.
 - Trauma or infection at insertion site.
 - Excessive tissue or absence/inadequate anatomic landmarks.
 - Recent IO device at the same site.
 - Fracture of insertion bone.
 - Recent sternotomy.

- Devices/procedure.
 - Procedure techniques vary based on model and can be either manual or power-driven.
 - Semiautomatic: Adult and pediatric Bone Injection Gun (B.I.G.)—spring-loaded, adult and pediatric EZ-IO—battery-powered drill.
 - Adult versus pediatric IO devices and needles are usually specified on the packaging labeling. Pediatric IO devices are only approved for the proximal and distal tibia.

- Insertion location.
 - Tibia: B.I.G., Cook, Sur-Fast, EZ-IO.
 - Proximal humerus: EZ-IO.
 - Sternum (manubrium): FAST1, sternal EZ-IO.

DO NOT USE HUMERAL OR TIBIAL IO DEVICES ON THE STERNUM.

- All IV fluids (except HTSs) and medications can be administered via IO in similar rates to IV infusions.
- Confirm placement of IO by aspirating a small amount of blood and then flush with 10 mL of normal saline.

IO device placement is age and anatomically location-specific. Care must be taken to ensure IO device insertion is correlated to the packaging labeling instructions (eg, tibial IO cannot be used on the sternum because of the length of the needle).
• The IO device should be removed as soon as possible after other IV access is established, but definitely before 24 hours.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 8

Anesthesia

Introduction

Battlefield anesthesia primarily describes a state of balanced anesthesia using adequate amounts of anesthetic agents to minimize cardiovascular instability while providing amnesia, analgesia, and a quiescent surgical field in a technologically austere environment. Adapting anesthetic techniques to battlefield conditions requires flexibility and a reliance on fundamental clinical skills. Although modern monitors provide a wealth of data, the stethoscope may be the only tool available in an austere environment. Thus, the value of crisp heart sounds and clear breath sounds when caring for an injured service member should not be underestimated.

In addition, close collaboration and communication with the surgeon are essential to assist with aggressive resuscitation and a team approach to damage control surgery decisions.

Airway

Many methods for securing a compromised airway exist, depending on the condition of the airway, the co-morbid state of the patient, and the environment in which care is being rendered. When a definitive airway is required, it is generally best secured with direct laryngoscopy and an endotracheal tube (ETT) firmly secured in the trachea.

Indications for a Definitive Airway

- Apnea/airway obstruction/hypercarbia.
- Impending airway obstruction: facial fractures, retropharyngeal hematoma, and inhalation injury.
- Excessive work of breathing.
- Shock (blood pressure ≤80 mm Hg systolic).
- Glasgow Coma Scale ≤8 (see Appendix 2).
- Persistent hypoxia (SaO₂ < 90%/PaO₂ < 60 mm Hg).

Secondary Airway Compromise Can Result From:

- Failure to recognize the need for an airway.
- Inability to establish an airway.
- Failure to recognize an incorrectly placed airway.
- Displacement of a previously established airway.
- Failure to recognize the need for ventilation.
Induction of General Anesthesia

- The anesthesia provider must evaluate the patient for:
 - Concurrent illness and current state of resuscitation.
 - Airway—facial trauma, dentition, hyoid-to-mandibular symphysis length, extent of mouth opening.
 - Cervical spine mobility (preexistent and trauma related).
 - Additional difficult airway indicators:
 - Immobilization.
 - Children.
 - Short neck/receding mandible.
 - Facial hair.
 - Obesity.
 - Prominent upper incisors.

Rapid Sequence Intubation (RSI) Checklist

- Equipment.
 - Laryngoscope, blades, and batteries (tested daily).
 - Suction, oxygen setup.
 - ETTs and stylet.
 - Airway adjuncts (oropharyngeal, nasopharyngeal, and LMA [laryngeal mask airway]).
 - IV access items.
 - Monitors—pulse oximeter, ECG, blood pressure, end-tidal CO₂.
 - Positive-pressure ventilation (Ambu bag or anesthesia machine).

- Drugs.
 - Narcotics.
 - Muscle relaxants.
 - Anxiolytics and amnestic.
 - Induction agents and sedatives.
 - Inhalation agents.

- Narcotics.
 - **Fentanyl:** 1.0–2.0 µg/kg IV bolus, then titrate to effect.
 - **Morphine:** 2–5 mg IV bolus to load, then 1–2 mg every 5 minutes to effect.
 - **Dilaudid** (Hydromorphone): 0.4–0.8 mg IV to load, then 0.2–0.4 mg every 5 minutes to effect.
 - Use caution when administering higher doses of opioids to patients with respiratory or hemodynamic compromise or head injury.

- Muscle relaxants.
 - Depolarizing.
 - **Succinylcholine.**
1.0–1.5 mg/kg. (Note: Can double the dose to give IM if IV access is not available and it is an emergency.)

- Onset: 30–60 seconds.
- Duration: 5–10 minutes.
- Can cause bradycardia, fasciculations, elevated intragastric pressure, elevated intracranial pressure, potassium release (especially in “chronic” burn or immobile patients), and prolonged duration of action possible with pseudocholinesterase deficiency.
- Potent trigger of malignant hyperthermia.

Succinylcholine should NOT be used in patients with burns or crush injuries >24 hours old or chronic neuromuscular disorders due to risk for hyperkalemia.

Rocuronium is the next best choice.

Nondepolarizing.

- Vecuronium: Induction dose of 0.1 mg/kg, with an onset of 2–3 minutes and a duration of action of 30–40 minutes.

- Rocuronium: Induction dose of 0.6 mg/kg, with an onset of 1.5–2.5 minutes and a duration of action of 35–50 minutes. At 1.2 mg/kg, onset is similar to succinylcholine, with a duration of action that can exceed 60–90 minutes.

- Pancuronium: Induction dose of 0.1–0.15 mg/kg (it will cause or exacerbate tachycardia), with an onset of 3.5–6 minutes and a duration of action of 70–120 minutes.

- Cisatracurium: Induction dose of 0.15–0.20 mg/kg, with an onset of 2–3 minutes and a duration of action of 30–40 minutes. (Drug of choice for renal or hepatic disease.)

- Anxiolytics and amnestics.
 - Versed (midazolam; 0.5–2 mg IV bolus).

Table 8-1. Induction Agents and Sedatives

<table>
<thead>
<tr>
<th>Agent</th>
<th>Routine Dose*</th>
<th>Characteristics</th>
<th>Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>1.0–2.0 mg/kg</td>
<td>Dissociative anesthetic and amnestic</td>
<td>Varying degrees of purposeful skeletal movement despite intense analgesia and amnesia</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Sympathomimetic effects (useful in hypovolemia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potent bronchodilator</td>
<td></td>
</tr>
</tbody>
</table>

Onset within 30–60 seconds
4.0–10.0 mg/kg IM Emergence delirium avoided with concomitant benzodiazepine use

Increased salivation; consider an antisialagogue

1.0–2.5 mg/kg IV Mixed in lipid, strict sterility must be ensured

Rapid onset and rapidly metabolized

Contraindicated in acute hypovolemic shock patients

Propofol

Onset within 30–60 seconds

Duration: 3–10 minutes

May cause clonus

May cause adrenal suppression

Etomidate

0.2–0.4 mg/kg IV Onset within 30–60 seconds

Duration: 3–10 minutes

Minimal cardiac effects

Minimal effects on peripheral and pulmonary circulation

Maintains cerebral perfusion

*All induction agents can be used for induction of severely injured patients if reduced dosages are used (eg, ½ of the lower recommended dose). However, the recommended choice for hypovolemic patients would be ketamine ≥ etomidate >> propofol.

- **Scopolamine:** 0.4 mg IV. (For use in hemodynamically unstable patients.)
- Induction agents and sedatives (Table 8-1).

Rapid Sequence Intubation—6 Steps

1. Preoxygenate with 100% oxygen by mask.
2. Cricoid pressure (maintain until ETT placement is confirmed).
3. Induction agent: etomidate 0.2–0.4 mg/kg IV push.
4. Muscle relaxant: succinylcholine 1.0–1.5 mg/kg IV push.
5. Laryngoscopy and orotracheal intubation (after 1 minute or seeing fasiculations).

Consider nasogastric or orogastric tube placement after securing airway.

NOTE: For children, see Table 31-4.

- Endotracheal intubation.
 - Orotracheal.
 - Direct laryngoscopy 60–90 seconds after administration of induction agents and neuromuscular blockade.
 - First attempt is the best chance for success, but have a backup plan:
 - Optimize positioning of patient and anesthesia provider.
 - Have adjuncts readily available (stylet, smaller diameter tubes,
alternative laryngoscope blades, suction, LMA, lighted stylet).

- Nasotracheal intubation should generally not be performed.
- Other considerations.
 - Maintain cricoid pressure until balloon is inflated and tube position is confirmed.
 - Hypertension can be managed with short-acting medications, such as beta blockers (labetalol, esmolol).
 - May treat induction-related (transient) hypotension initially with a small dose of ephedrine (5–10 mg), Neo-Synephrine (50 μg), or epinephrine (5–10 μg). But, if hypotension persists after induction agents are metabolized, use fluids to treat the persistent hypovolemia. The anesthesiologist must convey this situation to the surgeon, because the need to control bleeding becomes urgent.
 - A sensitive airway can be topically anesthetized with lidocaine 1.5 mg/kg 1–2 minutes before laryngoscopy.

- Verify ETT placement.
 - Auscultate the lungs.
 - Measure the end-tidal CO₂.
 - Ensure that the SaO₂ remains high.
 - Palpate cuff of ETT in sternal notch.
 - Place the chemical CO₂ sensors in the airway circuit.

Verification of tube placement is VITAL. Any difficulty with oxygenation/ventilation following RSI should prompt evaluation for immediate reintubation.

The Difficult Airway

(See Chapter 5, Airway/Breathing)

Initially provide airway management with jaw thrust and face mask oxygenation. Assess the situation. Failed RSI may be due to inadequate time for induction agents to work; inadequate time for muscle relaxation to occur; anatomically difficult airway; or obstruction due to secretions, blood, trauma, or foreign material.

- Resume oxygenation; consider placing a temporary oral and/or nasal airway.
- Reposition patient.
- Call for help.
- Consider alternatives to RSI.
 - Awake intubation.
 - LMA.
 - Regional anesthesia (RA) or local anesthesia.
Surgical airway.

Maintenance of General Anesthesia

General anesthesia is maintained after intubation with:

- **Oxygen.** Titrate to maintain $\text{SaO}_2 > 92\%$.
- **Ventilation.**
 - Tidal volume: 6–8 cc/kg.
 - Respiratory rate: 12–14/minute.
 - Positive end-expiratory pressure: if desired at 5 cm H$_2$O, titrate as necessary.
- **Minimal alveolar concentration (MAC).**
 - 0.6 MAC: awareness reliably abolished, although 50% of patients respond to verbal commands.
 - 1 MAC: 50% of patients do not move to surgical stimulus.
 - 1.3 MAC: 95% of patients do not move to surgical stimulus.
- **Common inhalation agent MACs:**
 - ♦ Halothane: 0.75%.
 - ♦ Sevoflurane: 1.8%.
 - ♦ Isoflurane: 1.17%.
 - ♦ Desflurane 6.00%.
 - ♦ Enflurane: 1.63%.
 - ♦ Nitrous oxide: 104%.
 - ♦ Additive effects (e.g., 60% nitrous oxide mixed with 0.8% sevoflurane yields 1 MAC).
- **Total intravenous anesthesia.**
 - Mix midazolam 5 mg, vecuronium 10 mg, ketamine 200 mg in 50 cc normal saline and infuse at 0.5 cc/kg/h (stop 10–15 minutes before end of surgery).
 - Mix 50–100 mg of ketamine with 500 mg of propofol (50 cc of 10% propofol) and 250 µg of fentanyl, and administer at 50–100 µg/kg/min of propofol (21–42 mL/h for a 70-kg patient).
- **Balanced anesthesia (titration of drugs and gases) combine:**
 - 0.4 MAC of inhaled agents.
 - Versed: 1–2 mg/h.
 - Ketamine: 0.5–1 mg/kg/h.
 - Fentanyl: 2–4 µg/kg/h.

Conclusion of General Anesthesia

- If the patient is to **remain intubated**, anesthetics may be terminated, but sedatives and possibly muscle relaxants should be continued.
- If the patient is to be **extubated**, controlled ventilation is decreased to allow
the patient to spontaneously breathe.
- Anesthetic agents are titrated to allow for rapid recovery.
- Muscle relaxation reversal is accomplished with Neostigmine (0.04–0.08 mg/kg IV over 3–5 minutes and can be mixed in the same syringe as Glycopyrrolate [Robinul 0.01–0.02 mg/kg IV over 3–5 minutes]).
- Extubation criteria include reversal of muscle relaxation, spontaneous ventilation, response to commands, eye opening, and head lifting for 5 seconds. **When in doubt, keep the patient intubated.**
- Amnestic therapy with midazolam and analgesic therapy with a narcotic are appropriate in small amounts so as not to eliminate the spontaneous respiratory drive.

Regional Anesthesia

RA is a “field-friendly” anesthetic requiring minimal logistical support while providing quality anesthesia and analgesia on the battlefield. Advantages of RA on the modern battlefield include the following:

- Excellent operating conditions.
- Profound perioperative analgesia.
- Stable hemodynamics.
- Limb-specific anesthesia.
- Reduced need for other anesthetics.
- Improved postoperative alertness.
- Minimal side effects.
- Rapid recovery from anesthesia.
- Simple, easily transported equipment needed.

Recent conflicts have revealed that the majority of casualties will have superficial wounds or wounds of the extremities. RA is well suited for the management of these injuries either as an adjunct to general anesthesia or as the primary anesthetic. The use of basic RA blocks is encouraged when time and resources are available.

- Superficial cervical plexus block.
- Axillary brachial plexus block.
- Intravenous RA.
- Wrist block.
- Digital nerve block.
- Intercostobrachial nerve block.
- Saphenous nerve block.
- Ankle block.
- Spinal anesthesia.
- Lumbar epidural anesthesia.
- Combined spinal-epidural anesthesia.
- Femoral nerve block.

Prior training in basic block techniques is implied, and use of a nerve stimulator
or ultrasound, when appropriate, is encouraged to enhance block success. More advanced blocks and continuous peripheral nerve blocks are typically not available until the patient arrives at a Role 3 or higher level healthcare facility where personnel trained in these techniques are available. A long-acting local anesthetic, such as 0.5% ropivacaine, is used for most single-injection peripheral nerve blocks. Peripheral nerve blocks can often be used to treat pain (without the respiratory depression of narcotics) while patients are waiting for surgery. Do not perform a peripheral nerve block for an injured extremity without consulting an orthopaedic or general surgeon regarding the risk of compartment syndrome and the potential to obscure its diagnosis.

- **Neuraxial anesthesia.**
 - Subarachnoid block.
 - Epidural block.

When the patient’s physical condition allows the use of spinal or epidural anesthesia, those techniques are encouraged. The sympathectomy that results is often poorly tolerated in a trauma patient, and this must be factored into any decision to use those techniques. Peripheral nerve blocks do not have this limitation.

Local Anesthesia

When local anesthesia would suffice, such as in certain wound debridements and wound closures, it should be the technique of choice.

Field Anesthesia Equipment

There are two anesthesia apparatuses currently fielded in the forward surgical environment: (1) the drawover vaporizer and (2) a conventional portable ventilator machine. A schematic of the drawover system is shown in Fig. 8-1.

- **Drawover vaporizer.**
 - Currently fielded model: Ohmeda Universal Portable Anesthesia Complete (UPAC).
 - Demand-type system (unlike the plenum systems in hospital-based ORs).
When the patient does not initiate a breath or the self-inflating bag is not squeezed, there is no flow of gas. No demand equals no flow.

- Temperature-compensated, flow-over inline vaporizer.
- Optimal oxygen conservation requires a larger reservoir (oxygen economizer tube) than is described in the operator’s manual—a 3.5-foot oxygen economizer tube optimizes FiO₂.
- May be used with spontaneous or controlled ventilations.
- Bolted-on performance chart outlines dial positions for some commonly used anesthetics (eg, halothane and isoflurane).

Ohmeda UPAC Drawover Apparatus in Combination With the Impact Uni-Vent Eagle Model 754 Portable Ventilator

- Currently, there is no mechanical ventilator specifically designed for use with the UPAC drawover apparatus; but, use with various portable ventilators has been studied in both the drawover and pushover configurations.
 - Adding the ventilator frees the anesthesia provider’s hands while providing more uniform ventilation and more consistent concentrations of the inhalational anesthetic agent.
 - The **drawover** configuration places the ventilator distal to the vaporizer, entraining ambient air and vapor across the vaporizer in the same manner as the spontaneously breathing patient. Do not attach a compressed source of air to the Impact Uni-Vent Eagle Model 754 in this configuration because the Uni-Vent Eagle Model 754 will preferentially deliver the compressed gases and will not entrain air/anesthetic gases from the UPAC drawover.
 - The **pushover** configuration places the ventilator proximal to the vaporizer, effectively pushing entrained ambient air across the
vaporizer and then to the patient.

- The Impact Uni-Vent Eagle Model 754 portable ventilator (Fig. 8-1) is not part of the UPAC apparatus, but is standard equipment for the US military. It has been used in combination with the Ohmeda UPAC drawover apparatus.
 - The air entrainment (side intake) port is used to create the drawover/ventilator combination.
 - The side intake port of the ventilator contains a nonreturn valve, preventing back pressure on the vaporizer that could result in erratic and inconsistent anesthetic agent concentrations.
 - The patient air-outlet port on the ventilator also contains a nonreturn valve, preventing backflow into the ventilator from the patient side.
 - Scavenging of waste gases can be accomplished by attaching corrugated anesthesia tubing to either the outlet port of the Ambu E-valve (induction circuit) or the exhalation port of the ventilator tubing (ventilator circuit) venting to the outside atmosphere.
 - The following items are added to the circuit to improve this UPAC/Impact Uni-Vent Eagle Model 754 ventilator combination:
 - Small and large circuit adapters to aid in attachment of various pieces.
 - Pall Heat and Moisture Exchange Filter to conserve heat and limit patient contact with the circuit.
 - Accordion circuit extender to move the weight of the circuit away from the patient connection.
 - Oxygen extension tubing to attach supplemental oxygen.
 - Two separate circuits should be constructed for use with the UPAC/Uni-Vent Eagle Model 754 combination: for induction and spontaneous ventilation and for controlled ventilation using the portable ventilator.
 - This process can be complicated because switching circuit components requires several disconnections and reconnections, creating the potential for error. (Practice.)

- **Conventional plenum anesthesia machine.**
 - Currently fielded models: Drager Narkomed and Fabius Tiro M.
 - Compact version of standard OR machines, with comparable capabilities.

For Clinical Practice Guidelines, go to
Chapter 9

Soft-Tissue and Open Joint Injuries

All war wounds are contaminated and should not be closed primarily.

Introduction
The goals in the treatment of soft-tissue wounds are to save lives, preserve function, minimize morbidity, and prevent infection through early and aggressive surgical wound care far forward on the battlefield.

Presurgical Care
- Prevent infection.
 - Antibiotics.
 - Antibiotics are not a replacement for surgical treatment.
 - Antibiotics are therapeutic, not prophylactic, in war wounds.
 - Give antibiotics for all penetrating wounds as soon as possible.
 - Sterile dressing.
 - Place a sterile field dressing as soon as possible.
 - Leave dressing undisturbed until surgery. A one-look soft-tissue examination may be performed on initial presentation. Infection rate increases with multiple examinations prior to surgery. Initial wound cultures unnecessary.

Surgical Wound Management Priorities
- Life-saving procedures have priority over limb and soft-tissue wound care.
- Save limbs.
 - Vascular shunt, bypass, or repair.
 - Compartment release (see Chapter 34, Compartment Syndrome).
- Prevent infection.
 - Early antibiotic administration.
 - Wound debridement as early as possible, preferably within 6 hours of wounding.
 - Sterile dressing. Avoid wound care on medical/surgical ward.
 - Fracture immobilization.
- Superficial penetrating fragment (single or multiple) injuries usually do not require surgical exploration.
 - Wounds should be assessed for the presence of pressurized dirt/debris
along with fragments.

- Limited wound extension may be reasonable to remove deep wound contamination.
- If there is no significant deep contamination, superficial wounds and skin can be cleansed with antiseptic and scrub brush.
- Avoid “Swiss cheese” surgery—connection of multiple small wounds into a single surgical wound is preferred over the creation of multiple large wounds that will result in prolonged healing or may limit the ability to accomplish a delayed repair.
- Maintain high suspicion for vascular injury and concurrent fragment wounding to head, chest, abdomen, and pelvis.

Wound Care

Primary Surgical Wound Care

- Limited longitudinal incisions.
- Excision of foreign material and devitalized tissue.
- Irrigation.
- Leave Wound Open—No Primary Closure.
- Antibiotics and tetanus prophylaxis.
- Splint for transport (improves pain control).

- Longitudinal incisions.
 - Extend wounds parallel to the longitudinal axis of the extremity to facilitate deep exposure.
 - Longitudinal incisions allow for proximal and distal extension for more thorough visualization and debridement.
 - Avoid transverse incisions; they do not facilitate subsequent extension if needed.
 - Incise obliquely across flexion creases to prevent flexion contracture.
- Wound excision (current use of the term debridement).
 - Skin.
 - Perform conservative excision (1–2 mm) of damaged skin edges (Fig. 9-1a).
 - Questionable areas can be assessed at the next debridement.
 - Fat.
 - Damaged, contaminated fat should be generously excised.
Fig. 9-1. (a) Skin excision, (b) removal of fascia, (c) removal of avascular tissue, and (d) irrigation.

- Fascia.
 - Damage to the fascia is often minimal relative to the magnitude of destruction beneath it (Fig. 9-1b).
 - Shredded, torn portions of fascia are excised, and the fascia is widely opened through a longitudinal incision to expose the entire zone of injury beneath.
 - Complete fasciotomy should be performed for compartment syndrome.
 - Limited fasciotomy is reserved for localized fascial injury without evidence of compartment syndrome.

Removal of dead muscle is important to prevent infection. Accurate initial assessment of muscle viability is difficult. Tissue-sparing debridement is acceptable if follow-on wound surgery will occur within 24 hours. More aggressive debridement is required if subsequent surgery will be delayed for more than 24 hours.

- Muscle.
 - Sharply excise all nonviable, severely damaged, avascular muscle (Fig. 9-1c).
The “4 C’s” (color, contraction, consistency, and circulation) may be unreliable for initial assessment of muscle viability. They should be used together to assist in determining the extent of muscle damage.

- **Color**—Assessment may be unreliable when used independently. Surface muscle may be discolored due to blood under the myomysium, contusion, or local vasoconstriction. Muscle at the wound margin may also be transiently hypoperfused in an incompletely resuscitated patient.

- **Contraction**—Assessed by observing the retraction of the muscle with the gentle pinch of forceps or a response to electrocautery.

- **Consistency**—May be the best predictor of viability. In general, viable muscle will rebound to its original shape when grasped by forceps, whereas muscle that retains indentation from the forceps has questionable viability.

- **Circulation**—Assessment via bleeding tissue from a fresh wound. Transient vasospasm, common with war wounds, may not allow for otherwise healthy tissue to bleed.

- **Bone.**
 - Fragments of bone with vascularized soft-tissue attachments and large free articular fragments are preserved.
 - Remove all devitalized, avascular pieces of bone smaller than thumbnail size that have no soft-tissue attachment.
 - Remove large fragments of diaphyseal and metadiaphyseal bone that have no soft-tissue attachments, but consider retention of osteoarticular fragments after thorough debridement if they were not grossly contaminated from the wounding mechanism.
 - Deliver each of the bone ends of any fracture independently, clean the surface, and clean out the ends of the medullary canal.

- **Nerves and tendons.**
 - Debridement—Not normally required except for trimming frayed edges and resecting grossly destroyed portions.
 - **Primary repair is not performed.** To prevent desiccation, use soft-tissue or moist dressings for coverage.

- **Vessels.**

 (Refer to Chapter 25, Vascular Injuries, for a discussion of considerations in vascular shunting, bypass, and repair.)
Debridement—Generally only a minimal debridement of the vessel is recommended for purposes of decreased infection risk. Priority should be given to restoration of flow to minimize distal tissue ischemia at the time of initial debridement.

- Irrigation.
 - Irrigation should begin after thorough surgical debridement has been accomplished.
 - Irrigation should be performed until the wound is visibly clean (Fig. 9-1d).
 - Irrigation volume between 6 and 12 L is often utilized for significantly contaminated, large open wounds.
 - Low-pressure irrigation is preferred for acute wounds. High pressure may extend wound contaminants deeper into soft tissues. Mechanical irrigation may be necessary if wounds have been chronically contaminated.
 - Sterile physiological fluid (0.9% normal saline) is preferred. Potable water may be used as an alternative when resources are scarce. May consider use of mild soap solution to potable water, as well as terminal irrigation with sterile solution (1–2 L).
 - A sterile, bulky dry dressing is most appropriate for patients being transported through and out of the battlefield.

- Negative pressure wound therapy (NPWT).
 - NPWT devices may be helpful in containing the wound environment.
 - NPWT devices may enhance the local wound environment and vascular permeability for wound healing.
 - NPWT devices may be placed over split-thickness skin grafts to facilitate graft adherence.
 - Loss of operation of NPWT devices can create an environment with a higher risk of infection. When utilized, NPWT devices need to be checked frequently to ensure operational performance.
 - Makeshift and improvised NPWT devices perform unpredictably and should not be used in a combat theater or during aeromedical transport.

- Antibiotic beads.
 - Antibiotic beads are not used for the majority of open wounds.
 - Antibiotic beads may be helpful in extending the period of
bacterial regrowth after initial debridement.

- Antibiotic beads are normally made using 1 g of Vancomycin/1.2 g of Tobramycin per 40 g of poly(methyl methacrylate) (PMMA) cement.
- May consider use of PMMA antibiotic beads beneath NPWT devices.

- Local soft-tissue coverage.
 - The development and rotation of flaps for this purpose should not be done during primary surgical wound care.
 - Local soft-tissue coverage through the gentle mobilization of adjacent healthy tissue to prevent drying, necrosis, and infection is recommended. Saline-soaked gauze is an alternative.

No Primary Closure of War Wounds

- Dressing.
 - Cavitary wounds—Wound may be gently packed with gauze to serve as a wick for fluid egress. **Do not plug the wound** with packing because this prevents wound drainage and creates an anaerobic environment.
 - Loosely apply circumferential bandages in anticipation of swelling during initial 72 hours postoperative.

Wound Management After Initial Surgery

- The wound undergoes a planned second debridement and irrigation in 24–48 hours, and subsequent procedures until a clean wound is achieved.
- The time interval between debridements may be extended to 48–72 hours if NPWT devices are utilized, provided all nonviable tissue has been removed.
- Between procedures, there may be better demarcation of nonviable tissue or the development of local infection.
- Early soft-tissue coverage is desirable within 3–5 days, when the wound is clean, to prevent secondary infection.
- Delayed primary closure (3–5 days) requires a clean wound that can be closed without undue tension. This state may be difficult to achieve in war wounds.
- Soft-tissue war wounds heal well through secondary intention. This is especially true of simple soft-tissue wounds.
- Definitive closure with skin grafts and muscle flaps should not be done in theater when evacuation is possible. These techniques may be required, however, for injured host nation casualties.

Crush Syndrome

- When a victim is crushed or trapped with compression on the extremities
for a prolonged time, there is the possibility for crush syndrome, characterized by ischemia and muscle damage or death (rhabdomyolysis).

- With rhabdomyolysis, there is an efflux of potassium, nephrotoxic metabolites, myoglobin, purines, and phosphorous into the circulation, thus resulting in cardiac and renal dysfunction.
- Reperfusion injury can cause up to 10 L of third-space fluid loss per limb that can precipitate hypovolemic shock.
- Acute renal failure (ARF) can result from the combination of nephrotoxic substances from muscle death (myoglobin, uric acid) and hypovolemia, resulting in a renal low-flow state.

- Recognition.
 - History.
 - Suspect in patients in whom there is a history of being trapped (eg, urban operations, mountain operations, earthquakes, or bombings) for a prolonged period (from hours to days).
 - Clear history is not always available in combat, and the syndrome may appear insidiously in patients who initially appear well.
 - Physical findings.
 - A thorough examination must be done with attention to extremities, trunk, and buttocks.
 - Physical findings depend on the duration of entrapment, treatment rendered, and time since the victim’s release.
 - Extremities.
 - May initially appear normal just after extrication.
 - Edema develops and the extremity becomes swollen, cool, and tense.
 - May have severe pain out of proportion with examination.
 - Anesthesia and paralysis of the extremities, which can mimic a spinal cord injury with flaccid paralysis, but there will be normal bowel and bladder function.
 - Trunk/buttocks: May have severe pain out of proportion with examination in tense compartments.
 - Laboratory findings.
 - Creatinine phosphokinase (CPK) is elevated with values usually >100,000 IU/mL.
 - The urine may initially appear concentrated and later change color to a typical reddish-brown color—the so-called “port wine” or “iced tea” urine. Urine output decreases in volume over time.
Due to myoglobin, urine dipstick is positive for blood, but microscopy will not demonstrate red blood cells. The urine may be sent to check for myoglobin, but results take days and should not delay therapy.

Hematocrit/hemoglobin (H/H) can vary, depending on blood loss; but, in isolated crush syndrome, H/H is elevated due to hemoconcentration from third-spacing fluid losses.

With progression, serum potassium and CPK increase further with a worsening metabolic acidosis. Creatinine and BUN will rise as renal failure ensues. Hyperkalemia is typically the ultimate cause of death from cardiac arrhythmia.

- Therapy.
 - On scene while still trapped.
 - The primary goal of therapy is to prevent ARF in crush syndrome. Suspect, recognize, and treat rhabdomyolysis early in victims of entrapment.
 - Therapy should be initiated as soon as possible, preferably in the field, while the casualty is still trapped. Ideally, it is recommended to establish IV access in a free arm or leg vein.
 - Avoid potassium and lactate containing IV solutions.
 - At least 1 L should be given prior to extrication and up to 1 L/h (for short extrication times) to a maximum of 6–10 L/d in prolonged entrapments.
 - As a last resort, amputation may be necessary for rescue of entrapped casualties (ketamine 2 mg/kg IV for anesthesia and use of proximal tourniquet).
 - Hospital care.
 - Other injuries and electrolyte anomalies must be treated while continuing fluid resuscitation, as given previously, to protect renal function.
 - Foley catheter for urine output monitoring.
 - Establish and maintain urine output >100 cc/h until pigments have cleared from the urine. If necessary, also:
 - Add sodium bicarbonate to the IV fluid (1 amp/L D5W) to alkalinize the urine above a pH of 6.5.
 - If unable to monitor urine pH, put 1 amp in every other IV liter.
 - Administer mannitol, 20% solution 1–2 g/kg over 4 hours (up to
200 g/d), in addition to the IV fluids.

- Central venous monitoring may be needed with the larger volumes (may exceed 12 L/d to achieve necessary urine output) of fluid given.
- Electrolyte abnormalities.
 - Hyperkalemia, hyperphosphatemia, hypocalcemia, and hyperuricemia must be addressed.
- Dialysis.
 - ARF requiring dialysis occurs in 50%–100% of those with severe rhabdomyolysis.
- Surgical management centers on diagnosis and treatment of **compartment syndrome**—remember to check torso and buttocks as well.
 - Amputation: Consider in casualties with irreversible muscle necrosis/necrotic extremity.
- Hyperbaric oxygen therapy: May be useful after surgical therapy to improve limb survival.

Compartment Syndrome

(See Chapter 25, Vascular Injuries, and Chapter 34, Compartment Syndrome)

- Compartment syndrome is an urgent surgical condition.
- Combat extremity injuries are at an elevated risk of developing a compartment syndrome within 48–72 hours postinjury.
- Compartment syndrome may occur with an injury to any fascial compartment: extremities, buttocks, or trunk.
- Compartment syndrome may occur with fascial defects or open wounds. The defect may not be adequate to fully decompress the compartment.
- Compartment syndrome is a clinical diagnosis. Pressure measurement is not necessary or advised in a combat setting.
- All compartments within a surgical-treated extremity should be released. Do not perform single or selective compartment release, especially in the lower leg and forearm.
- Mechanisms of injuries associated with compartment syndrome include the following:
 - Open fractures.
 - Closed fractures.
 - Penetrating wounds.
 - Crush injuries.
 - Vascular injuries.
 - Reperfusion following vascular repairs.
- Early clinical diagnosis of compartment syndrome.
- Pain out of proportion with injury and treatment.
- Tense, swollen compartment.
- Pain with passive stretch.
- Late clinical diagnosis.
 - Paresthesia.
 - Pulselessness and pallor.
 - Paralysis.
- Treatment: Emergent fasciotomy.
- Measurement of compartment pressures.
 - Not indicated for patients with a clear examination.
 - May be considered for patients who cannot be accurately assessed (obtund, intubated, and sedated body habitus), with low clinical suspicion, but entering prolonged transport.
- **Consider prophylactic fasciotomy for high index of suspicion and limited capacity for serial examination.**
 - Intubated, comatose, sedated.
 - Closed-head injuries.
 - Vascular repair independent of ischemia time.
 - Prolonged transport.

Fasciotomy Technique

(See Chapter 34, Compartment Syndrome)

- **Use full-length incisions to ensure that skin and subcutaneous tissues do not constrict the underlying muscle tissue.**
- **Keep fasciotomy wounds covered with moist dressing or an NPWT device. Do not use closure/approximation techniques during the initial fasciotomy if being transported. These may be appropriate to consider if the patient is not transported and can be adequately monitored.**

For Clinical Practice Guidelines, go to
Chapter 10

Infections

Introduction

All wounds incurred on the battlefield are grossly contaminated with bacteria. Most will become infected unless appropriate treatment is initiated quickly.

The battlefield environment is conducive to wound infection due to the:

- Absence of “sterile” wounding agents on the battlefield. All foreign bodies (wounding projectile fragments, clothing, dirt) are contaminated with bacteria.
- High-energy projectile wounding:
 - devitalized tissue,
 - hematoma, and
 - tissue ischemia.
- Delay in casualty evacuation.

Diagnosis of a Wound Infection

- The four “-or's”: dolor, rubor, calor, and tumor—pain and tenderness, redness, warmth, and swelling.
- Drainage or discharge, ranging from frank pus to the foul “dishwater” discharge of clostridial infection.
- Crepitus, radiographic evidence of soft-tissue gas, epidermal blistering, and/or epidermal necrosis are the hallmarks of necrotizing soft-tissue infection (eg, clostridial gas gangrene or necrotizing fasciitis).
- Systemic effects: fever, leukocytosis, unexplained tachycardia, or hypotension.
- Confirm diagnosis by Gram stain and culture, if available, and/or tissue biopsy.

Common Microorganisms Causing Battlefield Infections

- Gram-positive cocci:
 - staphylococci,
 - streptococci, and
 - enterococci.
- Gram-negative rods:
 - Escherichia coli, Proteus, and Klebsiella.
 - Pseudomonas, Enterobacter, Acinetobacter, and Serratia are common
nosocomial pathogens usually expected among casualties who have been hospitalized for an extended period, not those fresh off the battlefield.

- *Salmonella, Shigella,* and *Vibrio* should be suspected in cases of bacterial dysentery.

- Anaerobic gram-positive and gram-negative rods:
 - *Clostridia,*
 - *Bacteroides,* and
 - *Prevotella* species.

- Fungal species: *Candida* species should be suspected in casualties hospitalized for prolonged periods, those malnourished or immunosuppressed, or those who have received broad-spectrum antibiotics, adrenocortical steroids, or parenteral nutrition. Empiric therapy should be considered in appropriate patients with presumptive evidence of fungal infection.

Common Patterns of Infection

- **Skin, soft tissue, muscle, and bone:** Primarily due to staphylococcal, streptococcal, and clostridial species. These infections include:
 - wound abscess,
 - cellulitis,
 - septic arthritis,
 - osteomyelitis,
 - necrotizing fasciitis, and
 - gas gangrene.

- **Intracranial:** Meningitis, encephalitis, and abscess—commonly from staphylococci and gram-negative rods—are difficult to treat due to the impervious nature of the meninges to common antibiotics.

- **Orofacial and neck:** Gram-positive cocci and mouth anaerobes are generally responsive to surgery and clindamycin.

- **Thoracic cavity:** Empyema (usually staphylococcal) and pneumonia (*Staphylococcus, Streptococcus,* and *Pseudomonas*), especially among those on prolonged mechanical ventilation or those casualties prone to aspiration (polymicrobial).

- **Intraabdominal:** Include posttraumatic or postoperative abscess and peritonitis due to *Enterococcus,* gram-negative rods, and anaerobic bacilli. *Clostridium difficile* is often responsible for a potentially severe diarrheal colitis that occurs following the administration of even one dose of antibiotic.

- **Systemic sepsis:** A syndrome caused by a bloodborne or severe regional infection resulting in a global inflammatory response (fever, leukocytosis, tachycardia, tachypnea, and possibly hypotension).
 - A similar inflammatory response without infection can be caused by a focus of retained necrotic tissue or the mere act of sustaining severe trauma.
• Culprit microorganisms will not be recovered in all cases of sepsis syndrome.
• Although typically associated with gram-negative organisms, any bacterial or fungal agent can cause sepsis.

Prompt surgical source control, including debridement and drainage, are the cornerstones of prophylaxis/treatment of all war wound infections.

Treatment

General Principles
• Surgical and antibiotic treatment should begin as early as possible, ideally within 3 hours after injury and be repeated in the prophylaxis of war wound infection.
• Optimally, surgical debridement should be achieved within 6 hours of injury.
• Following initial exploration and debridement, the wound should be sufficiently irrigated to ensure that all dead material, bacterial contamination, and foreign material have been washed from the wound.

Table 10-1. Recommendations to Prevent Infections Associated With Combat-Related Injuries Based on Level of Care

<table>
<thead>
<tr>
<th>Level of Care*</th>
<th>Care Category</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role 1 field</td>
<td>Initial care in the field</td>
<td>Bandage wounds with sterile dressings (avoid pressure over eye wounds)</td>
</tr>
<tr>
<td></td>
<td>Stabilize fractures</td>
<td>Transfer to surgical support as soon as feasible</td>
</tr>
<tr>
<td></td>
<td>Postinjury antimicrobials</td>
<td>Provide single-dose point-of-injury antimicrobials if evacuation delayed or expected to be delayed</td>
</tr>
<tr>
<td>Role 1 treatment facility/Role 2 without surgical support</td>
<td>Postinjury antimicrobials</td>
<td>Provide IV antimicrobials as soon as possible (within 3 h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide tetanus toxoid and immune globulin as appropriate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhance gram-negative coverage with aminoglycoside or fluoroquinolone not recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Addition of penicillin to prevent clostridial gangrene or streptococcal infection not recommended</td>
</tr>
<tr>
<td>Debridement</td>
<td></td>
<td>Redose antimicrobials if large volume of blood produces resuscitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use only topical antimicrobials for burns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irrigate wounds to remove gross contamination with normal saline, sterile, or potable water, under low pressure (bulb syringe or equivalent) without additives</td>
</tr>
</tbody>
</table>
Debridement and irrigation

Irrigate wounds to remove contamination with normal saline or sterile water, under low pressure (5–10 PSI; eg, bulb syringe or gravity flow) without additives (use 3 L for each type I, 6 L for each type II, and 9 L for each type III extremity fractures)

Do not attempt to remove retained deep soft-tissue fragments if criteria met; † provide Cefazolin 2 g IV × 1 dose

Do not obtain cultures unless infection suspected

Surgical wound management

NPWT can be used

External fixation (temporary spanning) of femur/tibia fractures

External fixation (temporary spanning) or splint immobilization of open humerus/forearm fractures

Role 2 with surgical support and Role 3

Postinjury antimicrobials

Addition of penicillin to prevent clostridial gangrene or streptococcal infection not recommended

Redose antimicrobials if large volume of blood produces resuscitation

Use only topical antimicrobials for burns

Antimicrobial beads or pouches may be used

Provide postsplenectomy immunizations if indicated

Role 4

Postinjury antimicrobials

Complete course of postinjury antimicrobials

Antimicrobial beads or pouches may be used

Provide postsplenectomy immunizations if indicated

Irrigate wounds to remove contamination with normal saline or sterile water, under low pressure (5–10 PSI; eg, bulb syringe or gravity flow) without additives (use 3 L for each type I, 6 L for each type II, and 9 L for each type III extremity fractures)

Do not attempt to remove retained deep soft-tissue fragments if criteria met; † provide Cefazolin 2 g IV × 1 dose

Do not obtain cultures unless infection suspected

Surgical wound management

Wounds should not be closed until 3–5 d postinjury

Only dural and facial wounds should undergo primary closure

Role 2 with surgical support and Role 3

Postinjury antimicrobials

Provide IV antimicrobials as soon as possible (within 3 h)

Provide tetanus toxoid and immune globulin as appropriate

Enhance gram-negative coverage with aminoglycoside or fluoroquinolone not recommended

Addition of penicillin to prevent clostridial gangrene or streptococcal infection not recommended

Redose antimicrobials if large volume of blood produces resuscitation

Use only topical antimicrobials for burns

Antimicrobial beads or pouches may be used

Provide postsplenectomy immunizations if indicated

Postinjury antimicrobials

Do not attempt to remove retained deep soft-tissue fragments if criteria met; † provide Cefazolin 2 g IV × 1 dose

Do not obtain cultures unless infection suspected
NPWT can be used
External fixation (temporary spanning) of femur/tibia fractures
External fixation (temporary spanning) or splint immobilization of open humerus/forearm fractures

IV: intravenous; NPWT: negative pressure wound therapy; PSI: pounds per square inch.

*Role of care, level of care, and echelon of care are considered synonymous with role, currently the preferred US military term. **Role 1**—self-aid, buddy aid, combat lifesaver, and combat medic/corpsman care at the point-of-injury; physician/physician assistant care at battalion aid station (US Army) or shock trauma platoon (US Marine Corps [USMC]); no patient holding capacity. **Role 2**—medical company (includes forward support medical company, main support medical company, and area support medical company in US Army) or expeditionary medical support (US Air Force [USAF]); 72-h patient holding capacity; basic blood transfusion, radiography, and laboratory support. May be supplemented with surgical assets (Level 2b) (forward surgical team, US Army; mobile field surgical team, USAF; forward resuscitative surgical system, USMC). **Role 3**—combat support hospital (US Army), Air Force theater hospital (USAF), or casualty receiving ships (US Navy); full inpatient capacity with intensive care units and operating rooms. **Role 4**—regional hospital (Landstuhl Regional Medical Center, Germany) or US naval hospital ships, typically outside of the combat zone; general and specialized inpatient medical and surgical care. **Role 5**—care facilities within the United States, typically tertiary care medical centers. †Criteria for allowing retained fragments to remain behind: entry/exit wounds <2 cm; no bone, joint, vascular, and body cavity involvement; no high-risk etiology (eg, mine); no obvious infection; and assessible by X-ray.

Table 10-2. Postinjury Antimicrobial Agent Selection and Duration Based Upon Injury Pattern*

<table>
<thead>
<tr>
<th>Injury</th>
<th>Preferred Agent(s)</th>
<th>Alternate Agent(s)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremity wounds (include skin, soft tissue, and bone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin, soft tissue, no open fractures</td>
<td>Cefazolin 2 g IV q6–8h†,‡</td>
<td>Clindamycin (300–450 mg PO TID or 600 mg IV q8h)</td>
<td>1–3 d</td>
</tr>
<tr>
<td>Skin, soft tissue, with open fractures, exposed bone, or open joints</td>
<td>Cefazolin 2 g IV q6–8h†,‡,§</td>
<td>Clindamycin 600 mg IV q8h</td>
<td>1–3 d</td>
</tr>
<tr>
<td>Thoracic wounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetrating chest injury without esophageal disruption</td>
<td>Cefazolin 2 g IV q6–8h†,‡</td>
<td>Clindamycin (300–450 mg PO TID or 600 mg IV q8h)</td>
<td>1 d</td>
</tr>
<tr>
<td>Penetrating chest injury with esophageal disruption</td>
<td>Cefazolin 2 g IV q6–8h†,‡ + metronidazole 500 mg IV q8–12h</td>
<td>Ertapenem 1 g IV × 1 dose or moxifloxacin 400 mg IV × 1 dose</td>
<td>1 d after definitive washout</td>
</tr>
<tr>
<td>Abdominal wounds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Penetrating abdominal injury with suspected/known hollow viscus injury and soilage; may apply to rectal/perineal injuries as well

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>2 g IV q6–8h</td>
<td>†,‡</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>500 mg IV q8–12h</td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>1 g IV × 1 dose</td>
<td></td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>400 mg IV × 1 dose</td>
<td></td>
</tr>
</tbody>
</table>

Maxillofacial and neck wounds

Open maxillofacial fractures, or maxillofacial fractures with foreign body or fixation device

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>2 g IV q6–8h</td>
<td>†,‡</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>600 mg IV q8h</td>
<td></td>
</tr>
</tbody>
</table>

Central nervous system wounds

Penetrating brain injury

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>2 g IV q6–8h</td>
<td>†,‡; consider adding metronidazole 500 mg IV q8–12h if gross contamination with organic debris</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>2 g IV q24h; consider adding metronidazole 500 mg IV q8–12h if gross contamination with organic debris; for penicillin allergic patients, vancomycin 1 g IV q12h + ciprofloxacin 400 mg IV q8–12h</td>
<td></td>
</tr>
</tbody>
</table>

Penetrating spinal cord injury

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>2 g IV q6–8h</td>
<td>†,‡; ADD metronidazole 500 mg IV q8–12h if abdominal cavity is involved</td>
</tr>
<tr>
<td>As above; ADD metronidazole 500 mg IV q8–12h if abdominal cavity is involved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eye wounds

Eye injury, burn, or abrasion

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical: Erythromycin or Bacitracin ophthalmic ointment QID and PRN for symptomatic relief</td>
<td>Until epithelium healed (no fluorescein staining)</td>
</tr>
<tr>
<td>Systemic: No systemic treatment required</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolone 1 drop QID</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin 500 mg IV/PO once daily; before primary repair, no topical agents should be used unless directed by ophthalmology</td>
<td>7 d or until evaluated by a retinal specialist</td>
</tr>
</tbody>
</table>

Eye injury, penetrating

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical antimicrobials with twice daily dressing changes (include mafenide acetate)</td>
<td></td>
</tr>
</tbody>
</table>
Superficial Burns
- **Silver sulfadiazine; may alternate between the two,** silver-impregnated dressing changed q3–5d, or Biobrane
- **Silver nitrate solution applied to dressings**
- **Until healed**

Deep Partial-thickness Burns
- **Topical antimicrobials with twice daily dressing changes,** or silver-impregnated dressing changed q3–5d + excision and grafting
- **Silver nitrate solution applied to dressings + excision and grafting**
- **Until healed or grafted**

Full-thickness Burns
- **Topical antimicrobials with twice daily dressing changes + excision and grafting**
- **Silver nitrate solution applied to dressings + excision and grafting**
- **Until healed or grafted**

Point-of-injury/delayed evacuation

| Expected delay to reach surgical care | Moxifloxacin 400 mg PO × 1 dose; Levofloxacin 500 mg PO × 1 dose; Ertapenem 1 g IV or IM if penetrating abdominal injury, shock, or unable to tolerate PO medications | Cefotetan 2 g IV or IM q12h if penetrating abdominal injury, shock, or unable to tolerate PO medications | Single-dose therapy |

CSF: cerebrospinal fluid; **IM:** intramuscular; **IV:** intravenous; **PO:** orally; **PRN:** as needed; **QID:** four times daily; **TID:** three times daily.

Postinjury antimicrobial agents are recommended to prevent early posttraumatic infectious complications, including sepsis, secondary to common bacterial flora. Selection is based on narrowest spectrum and duration required to prevent early infections before adequate surgical wound management. This narrow spectrum is selected to avoid selection of resistant bacteria. The antimicrobials listed are not intended for use in established infections, where multidrug-resistant or other nosocomial pathogens may be causing infection.

†Cefazolin may be dosed based on body mass: 1 g if weight ≤80 kg (176 lbs), 2 g if weight 81–160 kg (177–352 lbs), and 3 g if weight >160 kg (>352 lbs); doses up to 12 g daily are supported by the Drug and Food Administration (FDA)-approved package insert.

‡Pediatric dosing: Cefazolin, 20–30 mg/kg IV q6–8h (maximum: 100 mg/kg/d); metronidazole, 7.5 mg/kg IV q6h; clindamycin, 25–40 mg/kg/d IV divided q6–8 h; ertapenem, 15 mg/kg IV or IM q12h (children up to 12 years) or 20 mg/kg IV or IM once daily (children older than 12 years; maximum: 1 g/d); ceftriaxone, 100 mg/kg/d IV divided q12–24h (dosing for central nervous system injury); levofloxacin, 8 mg/kg IV or PO q12h (levofloxacin is only FDA-approved in children for prophylaxis of inhalational anthrax in children older than 6 months, but this dose is commonly used for other indications); vancomycin, 60 mg/kg/d IV divided q6h (dosing for central nervous system injury); and ciprofloxacin, 10 mg/kg IV (or 10–20 mg/kg PO) q12h.

§These guidelines do not advocate adding enhanced gram-negative bacteria coverage (ie, addition of fluoroquinolone or aminoglycoside antimicrobials) in type III fractures.

¶Mafenide acetate is contraindicated in infants younger than 2 months.

‖Postinjury antimicrobial therapy as suggested by the Tactical Combat Casualty Care Committee.

- Wounds should be irrigated to minimize gross contamination with saline or sterile water by bulb syringe or gravity flow from irrigant bag.
- The skin is left open, and a lightly moistened sterile gauze dressing is
applied.

- For larger wounds, placement of a vacuum-assisted closure device may be indicated.
- Antibiotics should be started as soon as possible after wounding, then continued for 24 hours, depending on the size, extent of destruction, and degree of contamination of the wound.

Table 10-3. Specific Antibiotic Coverage for Theater-Specific Concerns: Culture Specific Recommendations

<table>
<thead>
<tr>
<th>Culture</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenem-resistant Acinetobacter</td>
<td>1st Line (if sensitive): Tobramycin 5–7 mg/kg qd × 10–14 days (monitor troughs if capable; goal, 2.0; otherwise, proceed to 2nd-line drug if Cr increases >0.5)</td>
</tr>
<tr>
<td></td>
<td>2nd Line: Colistin 2.5–5.0 mg/kg/d in 2–4 divided doses</td>
</tr>
<tr>
<td></td>
<td>3rd Line: Tigecycline 100 mg load, then 50 mg qd × 10 days</td>
</tr>
<tr>
<td>MRSA pneumonia</td>
<td>1st Line: Linelozid 600 mg IV/PO BID (literature suggests linelozid offers a treatment advantage over vancomycin)</td>
</tr>
<tr>
<td></td>
<td>2nd Line: Vancomycin 15 mg/kg q12h × 10–14 days (maintain trough level of 15–20 µg/mL)</td>
</tr>
</tbody>
</table>

For SEPSIS (Empiric Treatment):

- Perform empiric cultures. Then initiate antibiotics within 4 hours.
- 1st Line: Carbapenem with antipseudomonal coverage imipenem 1 g q6h or meropenem 1 g q8h **PLUS** Amikacin 15–20 mg/kg/d or gentamicin 5–7 mg/kg/d. Consider adding vancomycin 15 mg/kg q12h if VAP suspected.

CRITICAL: But this should be based on individual site antibiotigram.

BID: twice a day; Cr: creatine; IV: intravenous; MRSA: methicillin-resistant *Staphylococcus aureus*; PO: per os (by mouth); qd: every day; VAP: ventilator-associated pneumonia.

Data source: Reprinted, with minor modifications, from Appendix C, Specific Antibiotic Coverage for Theater-Specific Concerns, Clinical Practice Guidelines (Agency for Healthcare Research and Quality, Rockville, MD).

- If time from wounding to initiation of antibiotics is >6 hours, or time from wounding to surgery is >12 hours, give an antibiotics-using regimen for established infection.
- The choice of empiric antibiotic is dependent on the part of the body injured (Tables 10-1 to 10-3).
- Once a battlefield wound has become infected, treatment is two-fold: surgical and medical.
 - Surgical strategy remains the same: Open the wound, remove infected and necrotic tissue, and inspect for foreign material.
 - Drainage is generally used in abscess cavities to prevent premature closure and reformation.
Empiric broad-spectrum antibiotic therapy is initiated against likely pathogens and continued for 7–10 days.

Ideally, obtain cultures and tailor therapy to cover the actual pathogens recovered on Gram stain and culture. Routine bacteriology is often not available in forward medical facilities.

Because *Bacteroides* and *Clostridia* are difficult to culture, tailor antibiotic therapy to cover these organisms.

If the debrided wound still has possibly ischemic tissue or retained foreign material, the patient is returned to the OR every 1–2 days for redebridement, until absolute assurance of healthy, clean tissue is achieved.

Specific Infections

- **Tetanus.**
 - Battlefield wounds are “tetanus-prone” due to high levels of contamination with *Clostridium tetani*.
 - Bacteria grow anaerobically and release a CNS toxin that results in muscle spasm, trismus, neck rigidity, and back arching.
 - In addition to surgical debridement of war wounds, additional prophylactic measures for tetanus-prone wounds include:
 - Administration of 0.5 mL IM of *tetanus toxoid* if prior tetanus immunization is uncertain, less than three doses of tetanus vaccine or >5 years since the last dose.
 - Administration of 250–500 U IM of *tetanus immune globulin* in a separate syringe and at a separate site from the toxoid if prior tetanus immunization is uncertain or less than three doses.
 - Treatment for established tetanus includes:
 - IV antibiotics (penicillin G, 24 million U/d; or doxycycline, 100 mg bid; or metronidazole, 500 mg q6h for 7 days).
 - Tetanus immune globulin.
 - Wound debridement as needed.
 - IV diazepam to ameliorate the muscle spasm.
 - Place patient in a dark, quiet room free of extraneous stimulation.
 - May warrant endotracheal intubation, mechanical ventilation, and neuromuscular blockade.

- **Soft-tissue infections.**
 - **Cellulitis** is manifested by localized skin erythema, heat, tenderness, and swelling or induration.
 - Treatment: IV antibiotics against streptococcal and staphylococcal species (IV nafcillin, Cefazolin, or, in the penicillin-allergic patient,
clindamycin or vancomycin).

- **Postoperative wound infections** become evident by wound pain, redness, swelling, warmth, and/or foul or purulent discharge, with fever and/or leukocytosis.
 - Treatment: **Open the wound**, drain the infected fluid, and debride any necrotic tissue present.
 - The wound is left open and allowed to close via secondary intention.

- **Necrotizing soft-tissue infections** are the most dreaded infections, resulting from battlefield wounding. These include **clostridial myonecrosis (gas gangrene)** and **polymicrobial infections** caused by *Streptococcus, Staphylococcus, Enterococcus, Enterobacteriaceae, Bacteroides, and Clostridia*.
 - The organisms create a rapidly advancing infection within the **subcutaneous tissues** and/or **muscle** by producing exotoxins that lead to bacteremia, toxemia, and septic shock.
 - **All layers of soft tissue can be involved**, including skin (blistering and necrosis), subcutaneous tissue (panniculitis), fascia (fasciitis), and muscle.
 - Clinical manifestations begin locally with severe pain, crepitus, and with *Clostridia*—a thin, brown, foul-smelling discharge.
 - The skin may be tense and shiny, showing pallor or a bronze color.
 - Systemic signs include fever, leukocytosis, mental obtundation, hemolytic anemia, and hypotension, progressing rapidly to multiple organ failure and death in untreated or undertreated cases.
 - The diagnosis is made by a history of severe unexpected wound pain combined with palpable or radiographic soft-tissue gas (air in subcutaneous tissue and/or muscle).
 - Absence of soft-tissue gas does not exclude diagnosis of necrotizing infection.
 - **Treatment is surgical**, including early, comprehensive, and repeated (every 24–48 hours) debridement of all dead and infected tissue, combined with **antibiotics**.
 - **Excision** of affected tissue must be as radical as necessary (including amputation or disarticulation) to remove all muscle that is discolored, noncontractile, nonbleeding, or suspicious.
 - Identification of causative organisms is often problematic:
treatment must be aimed at all possible organisms.

- **IV antibiotic therapy.**
- **Clindamycin**, 900 mg q8h; plus **penicillin G**, 4 million U q4h; plus **gentamicin**, 5–7 mg/kg qd.
 - As a substitute for clindamycin: Metronidazole, 500 mg q6h.
 - As a substitute for penicillin: Ceftriaxone, 2.0 g q12h, or erythromycin, 1.0 g q6h.
 - As a substitute for gentamicin: Ciprofloxacin, 400 mg q12h.
- Alternative regimen: Imipenem, 1 g IV q6h.

Intraabdominal infections.
- Prevention.
- Regimens (start as soon as possible and continue x **24 hours** post-op):
 - **Single agent**: cefotetan, 1.0 g q12h; or ampicillin/sulbactam, 3 g q6h; or cefoxitin, 1.0 g q8h.
 - **Triple agent**: ampicillin, 2 g q6h; plus anaerobic coverage (metronidazole, 500 mg q6h; or clindamycin, 900 mg q8h); plus gentamicin, 5–7 mg/kg qd.
- Established intraabdominal infection (peritonitis or abscess).
 - Same regimen as above, except continue for 7–10 days.
 - Drain all abscesses.

Pulmonary infections.
- **Empyema** (generally streptococcal) following penetrating thoracic trauma is typically due to contamination from the projectile, chest tubes, or thoracotomy.
- Diagnosis: loculations, air/fluid levels on radiograph, pleural aspirate.
- Treatment.
 - Chest tube initially, and thoracotomy if unsuccessful.
 - Cefotaxime, or ceftriaxone, or cefoxitin, or imipenem.
- **Pneumonia** is most frequently due to aspiration (eg, patients with head injury) and prolonged mechanical ventilation.
- The diagnosis is made through radiograph finding of a new pulmonary infiltrate that does not clear with chest physiotherapy, combined with:
 - Fever or leukocytosis.
 - Sputum analysis showing copious bacteria and leukocytes.
- Empiric therapy is directed toward likely pathogens.
 - **Aspiration**: Streptococcal pneumonia, coliforms, and oral
anaerobes are likely. IV antibiotics—such as ampicillin/sulbactam, clindamycin, or cefoxitin—have been proven effective.

♦ **Ventilator-associated pneumonia**: *Staphylococcus, Pseudomonas,* and other nosocomial *Enterobacteriaceae*. Broad coverage is best with such agents as imipenem, ceftazidime, or piperacillin/tazobactam plus ciprofloxacin. Vancomycin should also be initiated if concern for methicillin-resistant *Staphylococcus aureus*.

Systemic Sepsis

Sepsis can be defined as infection combined with a prolonged systemic inflammatory response that includes two or more of the following conditions:

- Tachycardia.
- Fever or hypothermia.
- Tachypnea or hyperventilation.
- Leukocytosis or acute leukopenia.

Progression to septic shock is manifest by systemic hypoperfusion: profound hypotension, mental obtundation, or lactic acidosis. Treatment is a three-pronged approach:

- Identify and eradicate the source.
- Administer broad-spectrum intravenous antibiotics for the most likely pathogens.
- Use intensive care unit support for failing organ systems, such as cardiovascular collapse, acute renal failure, and respiratory failure.

It is often difficult to identify the source of sepsis, but it is the **most important factor** in determining the outcome. Potential sources of occult infection include:

- An undrained collection of pus, such as a wound infection, intraabdominal abscess, sinusitis, or perianal abscess.
- Ventilator-associated pneumonia.
- Urinary tract infection.
- Disseminated fungal infection.
- Central intravenous catheter infection.
- Acalculous cholecystitis.

Intensive care support for sepsis involves vigorous resuscitation to restore perfusion to prevent multiple organ dysfunction. This requires optimization of hemodynamic parameters (pulmonary artery occlusion pressure, cardiac output, and oxygen delivery) to reverse anaerobic metabolism and lactic acidosis. Endpoints of resuscitation—such as urine output, base deficit, and blood lactate levels—guide successful treatment. Until the source for sepsis is identified and actual pathogens isolated, empiric therapy with broad-spectrum intravenous antibiotics is warranted. Suitable regimens might include the following:

- Imipenem, 1 g IV q6h.
- Piperacillin and clavulanate (Zosyn), 3.375 g q6h; or ceftazidime, 2.0 g q8h; or cefepime, 2.0 g q12h; **plus** gentamicin, 5–7 mg/kg qd (based on a once-daily dosing strategy and no renal impairment); or ciprofloxacin, 400 mg q12h.
- Addition of vancomycin, 15 mg/kg q12h, if methicillin-resistant *Staphylococcus aureus* is a likely pathogen.
- Addition of linezolid, 600 mg q12h, if vancomycin-resistant enterococcus is a likely pathogen.

Battlefield casualties are at high risk for infection. In particular, war wounds are predisposed to infection due to environmental conditions on the battlefield, devitalized tissue, and foreign bodies in the wound. The key to avoiding wound infection is prompt and adequate wound exploration, removal of all foreign material, and excision of all dead tissue. All battlefield wounds and incisions, to include amputations, should have the skin left open. Antibiotics play an adjunctive role in the prophylaxis of wound and other infections in the battlefield medical treatment facility. Knowledge of likely pathogens for particular infections and sites, as well as optimal antibiotics to eradicate those pathogens (Table 10-4), will aid the battlefield clinician in averting and treating infections.

Table 10-4. Spectrum and Dosage of Selected Antibiotic Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Antibacterial Spectrum</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G</td>
<td>Streptococcus pyogenes, penicillin-sensitive Streptococcus pneumoniae, clostridial spp.</td>
<td>4 mU IV q4h</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Enterococcal spp., streptococcal spp., Proteus, some Escherichia coli, Klebsiella</td>
<td>1–2 g IV q6h</td>
</tr>
<tr>
<td>Ampicillin/sulbactam</td>
<td>Enterococcal spp., streptococcal spp., Staphylococcus, E. coli, Proteus, Klebsiella, clostridial spp., Bacteroides/Prevotella spp.</td>
<td>3 g IV q6h</td>
</tr>
<tr>
<td>Nafcillin</td>
<td>Staphylococcal spp.,* streptococcal spp.</td>
<td>1 g IV q4h</td>
</tr>
<tr>
<td>Piperacillin/clavulanate</td>
<td>E. coli, Pseudomonas, and other enterobacteriaceae, clostridial spp., Bacteroides/Prevotella spp.</td>
<td>3.375 g IV q6h</td>
</tr>
<tr>
<td>Imipenem</td>
<td>Enterococcal spp., streptococcal spp., Staphylococcus, E. coli, Pseudomonas, and other enterobacteriaceae, clostridial spp., Bacteroides/Prevotella spp.</td>
<td>1 g IV q6h</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>Staphylococcal spp.,* streptococcal* spp., E. coli, Klebsiella, Proteus</td>
<td>2 g IV q8h</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>Staphylococcal spp.,* streptococcal* spp., E. coli and similar enterobacteriaceae, clostridial spp.</td>
<td>1–2 g IV q6h</td>
</tr>
</tbody>
</table>
Bacteroides/Prevotella spp.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Spectrum</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>Streptococcal spp., E. coli, Pseudomonas, and other enterobacteriaceae</td>
<td>2.0 g IV q8h</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>Streptococcal spp., staphylococcal spp., Neisseria spp., E. coli, and most enterobacteriaceae (NOT Pseudomonas), clostridial spp.</td>
<td>1 g qd</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>E. coli, Pseudomonas, and other enterobacteriaceae</td>
<td>400 mg q12h</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>E. coli, Pseudomonas, and other enterobacteriaceae</td>
<td>5–7 mg/kg qd (based on once-daily dosing strategy and no renal impairment)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Streptococcal, enterococcal, and staphylococcal spp. (including MRSA, not VRE)</td>
<td>15 mg/kg q12h</td>
</tr>
<tr>
<td>Erthromycin</td>
<td>Streptococcal spp., clostridial spp.</td>
<td>0.5–1.0 g q6h</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Streptococcus spp., Staphylococcus spp., Clostridium spp., Bacteroides, and Prevotella spp.</td>
<td>900 mg q8h</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Clostridial spp., Bacteroides, and Prevotella spp.</td>
<td>500 mg q6h</td>
</tr>
</tbody>
</table>

MRSA: methicillin-resistant *Staphylococcus aureus*; spp.: species; VRE: vancomycin-resistant enterococci.

NOTE: Dosage and dosage intervals are average recommendations. Individual dosing may vary.

*Not MRSA.

References

Chapter 11

Critical Care

Introduction

The effective application of basic critical care concepts in a timely fashion is vital to the survival of the wounded warrior. At a fundamental level, most of the care required by patients in the combat care environment after a traumatic injury centers around the adequate delivery and utilization of oxygen. An organized organ system approach to care in the intensive care unit should focus on goals of resuscitation and the identification of factors that can threaten these efforts.

Shock/Endpoints of Resuscitation

Shock is an acute physiological state characterized by inadequate oxygen availability to support cellular metabolic needs. Uncompensated shock is easily identified at the bedside and is characterized by decreased urine output, altered mental status, hypotension, poor capillary refill, and tachycardia. Compensated shock is much more difficult to discern clinically because patients may look normal on examination, but, in fact, have organ hypoperfusion that is not appreciated. Resuscitation is not complete until adequate oxygen delivery (DO$_2$) and uptake have been ensured for all cells throughout the body.

$$\text{DO}_2 = \text{C.O.} \times 1.34 \times \text{Hgb} \times \text{SaO}_2 + 0.0031 \times \text{PaO}_2,$$

where C.O. = cardiac output, Hgb = hemoglobin, SaO$_2$ = percentage of oxygen saturation of hemoglobin, and PaO$_2$ = partial pressure of oxygen in the blood.

Hypovolemic shock is the most common form of shock in the combat casualty care setting and is characterized by decreased intravascular volume (IVV) as its primary abnormality. The resulting decrease in cardiac output leads to diminished DO$_2$. In the case of hemorrhage, there is also often an accompanying decrease in hemoglobin that also contributes to inadequate DO$_2$.

Distributive shock is produced by an inappropriate decrease in systemic vascular tone, leading to an abrupt decrease in blood pressure to a level that cannot ensure adequate organ perfusion. Neurogenic shock, septic shock, and anaphylactic shock are examples of this process that may be seen with reasonable frequency in the combat setting.

Cardiogenic shock results from a primary defect in the generation of cardiac output. Myocardial infarction leading to heart wall or valve function
abnormalities and cardiac tamponade are commonly seen examples. Many consider **obstructive shock** a related disorder. Processes that cause obstructive shock ultimately result in an inadequate cardiac output, although the mechanisms by which this occurs are variable. Pulmonary embolism (PE) and tension pneumothorax are two illustrative examples.

Define Goals of Shock Resuscitation

- Mean arterial pressure (MAP) > 60 mm Hg (assuming no traumatic brain injury [TBI]).
- Urine output > 0.5 mL/kg/h.
- Adequate DO$_2$ to meet the needs of organ function.

Management of Uncompensated Shock

- Define the type of shock and its etiology; eliminate the cause of the shock as possible.
- Vigorously replete the IVV if MAP or urine output is inadequate targeting central venous pressure 8–10 mm Hg.
 - Central venous pressure: 8–10 mm Hg.
 - Pulse pressure variation <13%.
 - Pulse pressure = systolic blood pressure (SBP) – diastolic blood pressure (DBP).
- Use vasopressor agents to support the MAP after adequate volume restoration.
 - Vasopressin is the first-line agent in burn resuscitation.
 - Norepinephrine is the first line in most other nonhemorrhagic situations.
 - Consider epinephrine in anaphylaxis.
 - Consider dopamine in cardiogenic shock associated with low blood pressure.

Detection of Compensated Shock and Subsequent Management

- Inadequate DO$_2$ relative to oxygen uptake (VO$_2$) leads to **increased anaerobic metabolism**.
- Anaerobic metabolism leads to **increased lactate production**.
- Increased lactate may lead to the development of an **anion gap metabolic acidosis**.
- An **increased base deficit** suggests inadequate resuscitation.
 - Base deficit = number of mmoL of bicarbonate that must be added to a liter of plasma to make the pH = 7.4, assuming the partial arterial gas pressure of CO$_2$ (PaCO$_2$) is normal.
- Central venous oxygen saturation (ScvO$_2$) < 65% suggests **inadequate resuscitation**.
 - The body should use <25%–35% of oxygen delivered.
 - Increased utilization by cells suggests inadequate DO$_2$.
• ScvO₂ < 65% suggests inadequate DO₂ and an implied need to optimize SaO₂, hemoglobin, or cardiac output.
 ♦ Optimize SaO₂ and IVV.
 ♦ Consider transfusion > 10 mg/dL.
 ♦ Consider inotropic therapy.

Fluid Management

Intravenous fluids are given to patients to either replete a deficit in IVV or prevent the development of such a deficit in a patient unable to accomplish these goals without assistance. The choice of fluid depends on which of these goals is being addressed and the overall clinical context.

- Total body sodium is directly proportional to extracellular fluid volume (ECFV).
- IVV generally represents 15%–20% of ECFV.
- IVV repletion, therefore, is dependent on sodium infusion.
 - Lactated Ringer’s (LR) solution: 130 mEq/L sodium, pH 5.5–6.0.
 - 0.9% normal saline (NS): 154 mEq/L sodium, pH 4.5–5.5.
- In most clinical contexts, colloid infusion confers no benefit during resuscitation relative to isotonic crystalloid solutions, such as LR and NS.
 - However, equivalent IVV repletion can be accomplished using lower volumes of colloid solutions.
- A nonanion gap metabolic acidosis frequently results from the use of large volumes of NS during resuscitation; continued resuscitation can be then accomplished using other isotonic fluid combinations.
 - 0.5 L of ½ NS with 75 mEq sodium bicarbonate (NaHCO₃): approximately 152 mEq/L sodium.
 - 1 L of D5W (5% dextrose in water) with 150 mEq NaHCO₃: approximately 150 mEq/L sodium.

Special Fluid Considerations

- **Hypertonic saline** should be considered in patients with TBI.
- ½ NS (±D5 [or 5% dextrose]) should be used for maintenance of IVV to counteract insensible losses.
- ½ NS (±D5) can be used to replete IVV for the rare patient with both hypernatremia and IVV depletion (postosmotic diuresis, etc).
- **Albumin** should be considered in the following patients:
 - Complicated burn resuscitation expected to result in >6 mL/kg/24 h resuscitation.
 - Refer to Chapter 26, Burns, for further guidance.
 - Severely malnourished patients with serum albumin concentration <1.0.
 - Cirrhotic patients who present with spontaneous bacterial peritonitis.
Serum Electrolyte Management

Serum sodium management depends primarily on the recognition that the serum sodium concentration is not necessarily indicative of IVV status. Although IVV is directly proportional to ECFV and, therefore, total body sodium, abnormal serum sodium concentrations usually represent abnormalities in free water handling. Notable exceptions include hypovolemic hyponatremia (diuretics, etc) and hypervolemic hypernatremia (hypertonic saline administration, etc). Two key questions are important to consider in all patients with an abnormal serum sodium:

- What is the IVV status of the patient?
- Is there free water excess (hyponatremia) or deficit (hypernatremia)?

Hyponatremia (Na < 135 mEq/L)

- **Euvolemic hyponatremia.**
 - **Differential diagnosis (Ddx):** Antidiuretic hormone (ADH) release (syndrome of inappropriate ADH, pain, anxiety), adrenal insufficiency, hypothyroidism, and severe polydipsia.
 - **Management:** Free water restriction, correct underlying cause.

- **Hypovolemic hyponatremia.**
 - **Ddx:** Diuretic use, cerebral salt wasting.
 - **Management:** IVV repletion with NS.

- **Hypervolemic hyponatremia.**
 - **Ddx:** Severe congestive heart failure (CHF), cirrhosis, or renal failure.
 - **Management:** Treat underlying condition; consider diuretic use.

 - **Relative “salt deficit” (mEq Na) = 0.6 × weight in kg × (140 – Na).**
 - Rate of serum sodium correction should be <1 mEq/L/h and <12 mEq/L/24 h.
 - Free water restriction for euvoletic and hypervolemic hyponatremia.
 - NS (154 mEq/L) or 3% saline (513 mEq/L Na) infusion.

 - **Reserved for seizures, severe mental status changes, etc.**

Hypernatremia (Na > 145 mEq/L)

- **Euvolemic hypernatremia.**
 - **Ddx:** Same as hypovolemic hypernatremia.
 - **Management:** Treat underlying cause, free water repletion.

- **Hypovolemic hypernatremia.**
 - **Ddx:** Renal water loss (osmotic diuresis [mannitol, hyperglycemia, etc]), impaired thirst/water intake, and central/nephrogenic diabetes insipidus.
 - **Management:** Treat underlying cause, replete IVV, and free water repletion.

- **Hypervolemic hypernatremia.**
 - **Ddx:** Iatrogenic (hypertonic saline administration).
 - **Management:** Free water repletion.
Relative “free water excess” (in liters) = 0.6 × weight in kg × (Na – 140)/140.
 ○ Rate of serum sodium correction should be <1 mEq/L/h and <12 mEq/L/24 h.

Serum potassium concentration is frequently abnormal in critically ill patients. Similar to the case with serum sodium concentration disorders, the serum potassium level may not be indicative of total body potassium stores. In the case of potassium, the vast majority is contained in the intracellular fluid volume (ICFV) space, and only a small portion is found in the ECFV or intravascular spaces. Potassium shifts back and forth between the ECFV and ICFV with relative ease, leading to potentially large swings in serum concentrations. Total body potassium may be quickly depleted if lost through renal or nonrenal excretion.

Hypokalemia (K < 3.5 mEq/L)

Serum hypokalemia may be secondary to redistribution of potassium from the ECFV to the ICFV, as is commonly seen with significant acidemia or increased beta-2 agonist utilization. Total body potassium depletion may also lead to a decrease in serum potassium concentration through renal (diuretic use, postobstructive diuresis, osmotic diuresis, metabolic alkalosis, and proximal/distal renal tubular acidoses) and nonrenal (diarrhea, sweat, and fasting) mechanisms.

Total body potassium deficits range from 150 to 400 mEq for each 1 mEq/L decrease in serum:

- Potassium supplementation must be carefully monitored to avoid hyperkalemia development.
- Repletion of potassium is made more difficult if total body magnesium stores are low.
- The pace of potassium repletion depends on the presence or absence of clinical manifestations more than the absolute serum concentration.
 ○ Prominent U waves, T-wave flattening on EKG.
 ○ Paralysis, respiratory muscle dysfunction, and rhabdomyolysis.
- Supplementation is best accomplished with enteral supplementation and is preferred if possible when the patient is clinically stable, because it is both safer and results in faster repletion relative to IV infusion.
 ○ IV infusion rates are limited to 10 mEq/h through a peripheral IV and 20–40 mEq/h through a central line, and these higher rates require continuous cardiac monitoring.
- Use KCl for replacement in most situations; potassium citrate or potassium bicarbonate is more appropriate when hypokalemia is associated with metabolic acidosis (especially renal tubular acidosis).
- Oral repletion: KCl elixir or tablet 30–60 mEq qid until serum potassium concentration normal.
- Emergent IV repletion: KCl via a central line 20–40 mEq/h until potassium > 3.0 mEq/L, then switch to oral as above or a lower infusion rate of 10–20
mEq/h until serum concentration is normal.
- Avoid IV fluids containing dextrose during emergent repletion, because the dextrose will result in the intracellular redistribution of potassium and complicate repletion efforts.

Hyperkalemia (K > 5.5 mEq/L)

Hyperkalemia may present as a result of several different mechanisms. **Pseudohyperkalemia** results when large amounts of potassium are spilled from the intracellular space during measurement and subsequently measured in the extracellular space. The measured serum potassium level is not indicative of true serum concentration in the patient (eg, severe thrombocytosis [>1,000,000] or leukocytosis [>200,000]). **Redistribution hyperkalemia** is seen in the trauma critical care setting most frequently as a result of academia, succinylcholine utilization, or hypertonic states (hypertonic saline or mannitol use). Finally, hyperkalemia may result from renal failure, hypoaldosteronism, and medications (penicillin potassium, salt substitutes, and exogenous potassium supplementation).

- Chronic hyperkalemia of a given value is generally better tolerated than acute presentations.
- Acute hyperkalemia should be regarded as a life-threatening medical emergency.
- Pace of treatment is generally dictated by EKG abnormalities (seen, in general order, as):
 - Peaked T waves, flattened P waves, and prolonged PR interval.
 - Idioventricular rhythm, widened QRS interval, sine wave pattern, and ventricular fibrillation.
- Treatment options for hyperkalemia include:
 - 50 mEq of NaHCO₃ (1 standard ampule of a 7.5% NaHCO₃ solution). Repeat every 30 minutes until QRS improved; often ineffective if renal failure has caused the hyperkalemia.
 - 10 mL of calcium chloride of a 10% solution (standard calcium chloride ampule) over 1–3 minutes; can repeat every 5 minutes, as long as severe EKG changes persist.
 - Consider dialysis as soon as possible if QRS widening has presented.
- Treatment with mild EKG changes (no evidence of QRS widening):
 - Beta-2 agonists (albuterol) 20 mg in 4 mL of saline nebulizer.
 - 50 mL of 50% dextrose/glucose, 10 U of regular insulin; follow glucose, repeat as needed EKG changes.
 - Loop or thiazide diuretic—use only in patients known to be intravascularly replete; will be ineffective in anuric renal failure.
 - Sodium polystyrene sulfonate (Kayexalate) 20 grams orally every 6 hours or 50 grams as an enema every 2–4 hours.
- Treatment with normal EKG consists of identification and correction of the cause, as well as 15 grams of sodium polystyrene sulfonate (Kayexalate)
orally every 6 hours or 30–60 grams as an enema every 2–4 hours.
- Intestinal necrosis can result, especially when given orally within a week of major surgery.

Serum magnesium is often not given significant priority in the care of the critical care patient. Serum magnesium represents only a fraction of the total body magnesium stores, similar to the case with potassium balance. A significant difference with respect to magnesium is that it does not transition readily from the ICFV to ECFV. **Low serum magnesium levels indicated severe total body magnesium deficits. Normal serum magnesium levels do not correlate reliably with total body magnesium stores.**

Hypomagnesemia (Mg < 2.0 mEq/L)

Hypomagnesemia usually results from **inadequate intake (NPO status, malnutrition prior to admission)** or **excessive loss, usually via renal mechanisms (diuretics, osmotic diuresis).**

- Magnesium < 1.0 mEq/L may be associated with central nervous system (CNS) excitability and torsades de pointes on EKG.
- Establishing and correcting the cause of hypomagnesemia is the ultimate key to the management of this disorder.
- Total body magnesium depletion (with or without serum hypomagnesemia) is frequently associated with both hypokalemia and hypocalcemia.
 - Successful repletion of potassium and calcium will not generally be possible until total body magnesium stores have been normalized.
- In the absence of CNS excitability or life-threatening hypokalemia or hypocalcemia, magnesium repletion should be given as 4 grams IV every 24 hours for 72 hours before serum magnesium levels are rechecked.
- If CNS excitability or life-threatening hypokalemia or hypocalcemia is present, 2 grams of magnesium should be given as an immediate push, followed by 4–6 grams in 6 hours, and followed by 4–6 grams each day for the next 2–3 days.
- Checking serum magnesium levels during repletion is not useful because mildly elevated magnesium levels do not indicate successful total body repletion, and clinically significant hypermagnesemia is not seen with the aforementioned rates of repletion unless severe renal failure exists.

Serum calcium disorders are seen frequently in the combat critical care setting. Hypocalcemia is seen with much greater frequency than hypercalcemia in this setting and will be given greater emphasis here. Serum calcium levels are often corrected for serum albumin levels since negatively charged proteins, such as albumin, bind positively charged calcium cations. Ionized calcium is the physiologically relevant portion of total calcium. Adjusting total calcium for measured albumin values is useful only if a measurement of ionized calcium is not available. In the combat casualty care setting, ionized calcium measurements can be obtained quickly using handheld point-of-care testing devices, such as the
Hypocalcemia (iCa < 1.10)

Hypocalcemia in the combat setting is seen most frequently after massive blood product transfusion (calcium is bound by citrate used as an anticoagulant) or as a result of associated total body hypomagnesemia. QT interval prolongation can result from severe hypocalcemia, and its presence dictates the pace of repletion.

- 10% calcium chloride 10 mL vial contains 272 mg of elemental calcium.
- 10% calcium gluconate 10 mL vial contains 93 mg of elemental calcium.
- Administer one 10 mL vial of 10% calcium chloride in 50–100 mL of D5 in water for >10–15 minutes if QT prolongation is noted.
 - Follow this with 1–2 mEq/h of elemental calcium infusion until QT prolongation has been resolved or >1.00–1.10 grams of calcium are corrected to within normal range.
- Hypocalcemic patients without QT prolongation can be repleted as follows:
 - Oral supplementation of 1.5–2.5 grams of elemental calcium per day.
 - If oral supplementation is not possible, initiate an infusion of 0.5 mg/kg/h of elemental calcium >1.10.
- If hypocalcemia is difficult to correct, consider total body magnesium depletion (with or without serum hypomagnesemia); an associated hypokalemia may be a clue to the presence of a trication deficiency.

Pulmonary Medicine

Basics of Mechanical Ventilation

Patients are placed on invasive mechanical ventilation most commonly for airway protection, respiratory failure (hypoxemia), or ventilatory failure (hypercapnia leading to acidemia). Another relatively common indication is in the setting of shock to optimize DO₂. Compliance of the chest wall/lung unit is defined by the change in volume associated with a given change in pressure. Inherent in this definition is the concept that a volume given to the patient by a ventilator will result in some change in pressure, whereas a pressure given will result in some change in volume.

Volume control modes of ventilation (assist-control [A/C], synchronized intermittent mandatory ventilation [SIMV]) provide mandatory breaths as a set volume (a set flow is given until a predefined volume is achieved) and generate some resulting pressure.

Pressure control modes of ventilation (pressure control ventilation) provide mandatory breaths as a set pressure, generating some resulting volume.

Ventilation (elimination of CO₂) is necessary to achieve a target pH that is physiologically acceptable to the body (7.35–7.45 in most patients).

- PaCO₂ is manipulated by mechanical ventilation most reliably by altering
respiratory rate (RR) or tidal volume (VT) in order to change the minute volume (Ve).

Oxygenation/respiration (intake of oxygen) is necessary to support adequate DO₂ to the patient. Goal SaO₂ in most patients ranges between 92%−100%. There is generally little physiological benefit from attempting to manipulate the ventilator to achieve values higher than 92%−94%.

Using positive pressure ventilation, increased oxygenation/respiration occurs by increasing the fraction of inspired oxygen (FiO₂) or increasing the mean airway pressure (positive end-expiratory pressure [PEEP]).

- A low PaO₂/FiO₂ (<300), in the absence of very severe hypercapnia, suggests shunt physiology as the most likely cause of hypoxemia in a patient.
- Increased mean airway pressure may be a useful adjunct (increase the PEEP).
- FiO₂ manipulation alone will be unlikely to correct hypoxemia in this setting.

Initial ventilator settings for most patients should strive to optimize oxygenation and ventilation while at the same time serve to minimize barotrauma (pneumothorax, subcutaneous emphysema, etc., due to excessive transalveolar pressures), volutrauma (lung damage due to excessive stretch), atelectotrauma (lung damage due to repetitive opening and closing of alveoli), and biotrauma (release of cytokines related to the application of positive pressure ventilation).

Mode: Volume Cycled (A/C or SIMV)

- SIMV is not recommended because it is associated with increased work of breathing when used for prolonged periods.
- In addition, when SIMV is used, it is best to use pressure support ventilation to augment any spontaneous breaths.
 - The standard military transport ventilator (Impact 754) does not allow pressure support ventilation to be used when the SIMV mode is used.
- FiO₂ = 100%; titrate down to lowest amount to keep SpO₂ or SaO₂ > 92%.
 - SaO₂ = saturation of hemoglobin as measured by arterial blood gas sampling.
 - SpO₂ = noninvasive pulse oximetry; a rough estimate of SaO₂.
- VT = 5–7 mL/kg ideal body weight.
 - Ideal predicted body weight in kilograms in males = 50 + 2.3 (height in inches − 60).
 - Ideal predicted body weight in females = 45.5 + 2.3 (height in inches − 60).
 - Adjust to keep <8 mL/kg and plateau pressures < 30 cm H₂O.
- RR = 16.
 - Adjust to keep RR × VT adequate to manipulate PaCO₂ to achieve goal
pH.
- Inspiration:expiration (I:E) ratio = 1:2 to 1:3.
- PEEP = 5 cm H$_2$O.
 - Increase PEEP if PaO$_2$/FiO$_2$ < 300 (shunt physiology expected).
 - Increase PEEP to 10–12 cm H$_2$O if shunt physiology present.
 - Increase as necessary above this level to keep SpO$_2$ > 92%.
 - With increased PEEP, V$_T$ may need to be decreased to keep plateau pressures < 30 cm H$_2$O.

Acute Respiratory Distress Syndrome/Acute Lung Injury

Both acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) represent the same disease process, and their definition differs only on the degree of shunt as estimated by the PaO$_2$/FiO$_2$:

- Acute presentation of hypoxemic respiratory failure.
- Bilateral infiltrates on chest radiography.
- No clinical evidence of left heart volume overload; pulmonary capillary wedge pressure < 18 mm Hg if measured.
- PaO$_2$/FiO$_2$ < 200 (ARDS), PaO$_2$/FiO$_2$ 200–300 (ALI).

ARDS can be caused by direct (inhaled toxins, aspiration) or indirect (trauma, burns, any cause of systemic inflammatory response syndrome) mechanisms, but the basic management is similar.

Basic ventilatory strategies are designed to minimize barotrauma by avoiding excessive alveolar pressures, volutrauma by limiting delivered V$_T$ and atelectotrauma by keeping alveoli open using increased mean airway pressure ventilator strategies. A ventilator strategy encompassing these features was found by the ARDSNet investigators to lead to an improved mortality relative to standard of care in 2000 and should be followed where possible (Table 11-1).

Adjunctive therapies for ARDS have been studied for decades and have been demonstrated to have variable clinical benefit. Each can be considered in a given patient depending on the clinical scenario and availability of resources.

- High (>16 cm H$_2$O) vs moderate (10–16 cm H$_2$O) PEEP.
 - Possible benefit using higher levels in patients with more severe hypoxemia.
- Prone positioning.
 - Improves oxygenation in patients with severe hypoxemia.
 - No definitive mortality benefit.
 - Can be accomplished with a Stryker frame in the combat support setting.
 - Device can be used in combat medical facilities, as well as ground and air transport vehicles.
Table 11-1. Mechanical Ventilation Protocol Summary

INCLUSION CRITERIA

Acute onset of the following:
1. PaO$_2$/FiO$_2$ ≤ 300 (corrected for altitude).
2. Bilateral (patchy, diffuse, or homogeneous) infiltrates consistent with pulmonary edema.
3. No clinical evidence of left atrial hypertension.

PART I: VENTILATOR SETUP AND ADJUSTMENT

1. Calculate PBW.

 Males = 50 + 2.3 (height [inches] – 60).

 Females = 45.5 + 2.3 (height [inches] – 60).

2. Select any ventilator mode.
3. Set ventilator settings to achieve initial V$_T$ = 8 mL/kg PBW.
4. Reduce V$_T$ by 1 mL/kg at intervals ≤2 hours until V$_T$ = 6 mL/kg PBW.
5. Set initial rate to approximate baseline minute ventilation (not >35 bpm).
6. Adjust V$_T$ and RR to achieve pH and plateau pressure goals below.

Oxygenation Goal: PaO$_2$, 55–80 mm Hg or SpO$_2$, 88%–95%

Use a minimum PEEP of 5 cm H$_2$O. Consider use of incremental FiO$_2$/PEEP combinations, such as shown below (not required) to achieve goal.

Lower PEEP/Higher FiO$_2$

<table>
<thead>
<tr>
<th>FiO$_2$</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiO$_2$</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18–24</td>
</tr>
</tbody>
</table>

Higher PEEP/Lower FiO$_2$

<table>
<thead>
<tr>
<th>FiO$_2$</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiO$_2$</th>
<th>0.5</th>
<th>0.5–0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

Plateau Pressure Goal: ≤0 cm H$_2$O

Check Pplat (0.5-second inspiratory pause), at least q4h and after each change in PEEP or V$_T$.

- If Pplat > 30 cm H$_2$O: decrease V$_T$ by 1 mL/kg steps (minimum = 4 mL/kg).
- If Pplat < 25 cm H$_2$O and V$_T$ < 6 mL/kg, increase V$_T$ by 1 mL/kg until Pplat > 23 cm H$_2$O or V$_T$ = 6 mL/kg.
- If Pplat < 30 and breath stacking or dyssynchrony occurs: may increase V$_T$ in 1 mL/kg increments to 7 or 8 mL/kg if Pplat remains ≤30 cm H$_2$O.

pH Goal: 7.30–7.45

Acidosis management: pH < 7.30

- If pH 7.15–7.30: Increase RR until pH > 7.30 or PaCO$_2$ < 25.
 - Maximum set RR = 35.
- If pH < 7.15: Increase RR to 35.
 - If pH remains <7.15, V$_T$ may be increased in 1 mL/kg steps until pH >7.15 (Pplat target of 30 may be exceeded).
May give NaHCO₃.

Alkalosis management: pH > 7.45 (decrease vent rate, if possible)

I:E: Ratio Goal

Recommend that the duration of inspiration be less than or equal to the duration of expiration.

PART II: WEANING

A. Conduct a Spontaneous Breathing Trial Daily When:
 1. FiO₂ ≤ 0.40 and PEEP ≤ 8.
 2. PEEP and FiO₂ less than or equal to the values of the previous day.
 3. Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
 4. Systolic BP ≥ 90 mm Hg without vasopressor support.
 5. No neuromuscular blocking agents or blockage.

B. Spontaneous Breathing Trial

If all of the above criteria are met and the subject has been in the study for at least 12 hours, initiate a trial of up to 120 minutes of spontaneous breathing with FiO₂ ≤ 0.5 and PEEP ≤ 5:

 1. Place on T-piece, trach collar, or CPAP ≤ 5 cm H₂O with PS ≤ 5.
 2. Assess for tolerance as below for up to 2 hours.
 a. SpO₂ ≥ 90; and/or PaO₂ ≥ 60 mm Hg.
 b. Spontaneous Vₜ ≥ 4 mL/kg PBW.
 c. RR ≥ 35/min.
 d. pH ≥ 7.3.
 e. No respiratory distress (distress = 2 or more).
 i. HR > 120% of baseline.
 ii. Marked accessory muscle use.
 iii. Abdominal paradox.
 iv. Diaphoresis.
 v. Marked dyspnea.
 3. If tolerated for at least 30 minutes, consider extubation.
 4. If not tolerated, resume preweaning settings.

DEFINITION OF UNASSISTED BREATHING

(Different from the Spontaneous Breathing Criteria Because PS Is Not Allowed)

1. Extubated with face mask, nasal prong oxygen, or room air
 OR
2. T-tube breathing
 OR
3. Tracheostomy mask breathing
 OR
4. CPAP ≤ 5 cm H₂O without PS or IMV assistance.

ARDS: acute respiratory distress syndrome; BP: blood pressure; bpm: breaths per minute; CPAP: continuous positive airway pressure; FiO₂: inspired oxygen; HR: heart rate; I:E: inspiration:expiration; IMV: intermittent mandatory ventilation; NaHCO₃: sodium bicarbonate; PaCO₂: partial arterial gas pressure (tension) of carbon dioxide; PaO₂: partial pressure of oxygen in the blood; PBW: predicted body weight; PEEP: positive end-
- Conservative IVV management.
 - Improved outcomes relative to liberal strategy, as tolerated by physiology and injury pattern of the patient in question.
- Pulmonary artery catheter vs central venous pressure monitoring.
 - No benefit to using a pulmonary artery catheter to guide fluid management.
- Special dietary formulations.
 - No single proprietary formula has been demonstrated to improve outcomes.
- Corticosteroids.
 - No consistent benefit for the use of corticosteroids in ARDS.
- Inhaled nitric oxide.
 - Improved oxygenation noted.
 - No mortality benefit.
- Pressure control ventilation.
 - No significant outcomes benefit relative to volume control A/C mode.
 - If used, efforts must be made to continue to limit V_T as outlined in the ARDSNet protocol.
- Airway pressure release ventilation.
 - No significant outcomes benefit relative to volume control A/C mode.
 - Equivalent mean airway pressures can be obtained using lower amounts of sedation, and patients are less likely to require neuromuscular blockade.
 - If used, efforts must be made to continue to limit V_T as outlined in the ARDSNet protocol.
- High-frequency oscillatory ventilation.
 - No benefit to standard of care demonstrated in the 1990s.
 - Has not been directly compared with ARDSNet low V_T strategy.
 - Technology and expertise unlikely to be available in combat support operations.
- Extracorporeal membrane oxygenation.
 - Improved oxygenation.
 - No mortality benefit.
 - Technology and expertise unlikely to be available in combat support operations.
- Extracorporeal carbon dioxide removal.
 - Maybe a useful adjunct with carbon dioxide elimination is severely limited.
 - Has not been directly compared with ARDSNet low V_T strategy.
Patients with PEEP > 14 cm H₂O or who appear clinically unstable and who require immediate transport should be considered candidates for activation of specialized lung teams, where available. Such a team is based at Landstuhl Regional Medical Center to support EUCOM (US European Command), AFRICOM (Africa Command), and CENTCOM (US Central Command) missions.

Pulmonary Contusion

Pulmonary contusion is frequently seen in the combat setting, most commonly being associated with blunt, nonpenetrating trauma with or without rib fractures. The disorder is similar to ARDS, in that it may present with a significant degree of hypoxemia due to shunt physiology requiring increased mean airway pressure, as well as decreased compliance requiring limited Vₜ. A significant distinction between the two clinical syndromes is the profoundly asymmetric nature of pulmonary contusion. Excessive mean airway pressure delivery may lead to overdistension of healthy lung, which has the effect of shunting blood away from well-ventilated alveoli (increasing dead space fraction) and toward poorly ventilated contused regions (increasing shunt). Each patient may have a different mean airway pressure where this happens that is clinically hard to predict. If an increase in PEEP is associated with a significant fall in oxygen saturation, an increase in shunt physiology due to excessive mean airway pressure should be suspected, and PEEP should be decreased to its previous level. Pulmonary contusion is generally managed in a supportive fashion using a low Vₜ strategy and occasional bronchoscopy to facilitate pulmonary toilet.

Pulmonary Embolism

PE is part of a broader disease process that includes deep venous thrombosis (DVT) known as venous thromboembolic disease. DVT is very common in the trauma setting and associated PE may be a life-threatening result. Diagnosis of DVT can be made in the combat support setting using duplex ultrasound or CT chest/PE protocol with leg venous runoffs if available, but may need to be treated empirically if clinically suspected; however, technology is unavailable for confirmation. PE diagnosis is difficult in the best of circumstances, but it is vital to systematically define pretest probability before ordering any studies. Available studies to confirm PE in the combat support setting are largely limited to CT chest/PE protocol performance at higher echelon facilities. If pretest clinical suspicion (see next page) is moderate or high, treatment should be given until confirmatory testing has been accomplished.

Diagnosis of DVT

- Define pretest clinical suspicion.
- If low pretest clinical suspicion, do not work up further.
- If moderate or high pretest clinical suspicion, perform duplex ultrasonography.
- If clinical suspicion is high in the absence of ultrasonography high pretest clinical suspicion, but negative ultrasonography, consider empiric treatment
with further testing at a higher echelon of care.

- Consider empiric treatment with further testing at a higher echelon.
 - Consider serial ultrasonography (a total of three times over 3–5 days).

- **Treatment of DVT.**
 - Low molecular weight heparin (Lovenox 1 mg/kg subcutaneously bid)
 - Consider removable inferior vena cava filter placement if there is a contraindication to anticoagulation. Examples of contraindications to anticoagulation common to the combat casualty include TBI, solid visceral injury, pelvic fracture, etc.

Diagnosis of PE

- Define pretest clinical suspicion.

- If low clinical suspicion:
 - Obtain duplex ultrasonography of bilateral lower extremities (if available).
 - Perform portable chest X-ray (pCXR) (PA/LAT CXR [posteroanterior/lateral chest X-ray], if possible) to exclude easily identified mimics of PE (pneumothorax, hemothorax, ARDS, pulmonary contusion, and pneumonia).
 - Do not work up further if ultrasound is negative (or if study unavailable).

- If moderate or high clinical suspicion:
 - Initiate therapy with low molecular weight heparin (Lovenox 1 mg/kg subcutaneously bid).
 - Perform pCXR (PA/LAT CXR, if possible) to exclude easily identified mimics of PE (pneumothorax, hemothorax, ARDS, pulmonary contusion, and pneumonia).
 - Obtain duplex ultrasonography of bilateral lower extremities (if available).

 - If DVT identified, continue full-dose low molecular weight heparin and do not perform further diagnostic studies to evaluate for PE.
 - Obtain CT chest/PE protocol if ultrasound is negative (or unavailable).
 - If CT chest/PE protocol was performed and was negative for PE, therapy for PE can be discontinued, and no further diagnostic studies to evaluate for PE are necessary.
 - Full-dose anticoagulation should be continued unless the CT chest/PE protocol was normal or another obvious source for the patient's symptoms is identified.

 - Further diagnostic evaluation should be performed at higher medical treatment facilities in this case.

 - Removable inferior vena cava (IVC) filter placement should be considered in patients with PE pretest clinical suspicion who have DVT or PE diagnosed, or in whom PE cannot be excluded by CT
chest/PE protocol, and in whom there is a significant contraindication to therapeutic anticoagulation.

- Placement of such endovascular devices will not be possible at most combat support medical facilities.

- If high pretest clinical suspicion:
 - Initiate therapy with low molecular weight heparin (Lovenox 1 mg/kg subcutaneously bid).
 - Perform pCXR (PA/LAT CXR, if possible) to exclude easily identified mimics of PE (pneumothorax, hemothorax, ARDS, pulmonary contusion, and pneumonia).
 - Obtain duplex ultrasonography of bilateral lower extremities (if available).
 - If DVT identified, continue full-dose low molecular weight heparin and do not perform further diagnostic studies to evaluate for PE.
 - Obtain CT chest/PE protocol if ultrasound is negative (or available).
 - Full-dose anticoagulation should be continued regardless of the CT chest/PE protocol results in the setting of high pretest clinical suspicion unless another obvious source for the patient’s symptoms is identified.
 - Further diagnostic evaluation should be performed at higher medical treatment facilities in this case.
 - Removable IVC filter placement should be considered in patients with high pretest clinical suspicion who have DVT or PE diagnosed; or in whom another obvious diagnosis is not provided by CXR, ultrasound, or CT chest/PE protocol; and in whom there is a significant contraindication to therapeutic anticoagulation.
 - Placement of such endovascular devices will not be possible at most combat support medical facilities.

Hemodynamically Significant PE

The majority of patients who die from PE die of right heart failure associated with acute pulmonary hypertension rather than hypoxemia. A high pretest clinical suspicion for PE in the setting of hypotension and evidence of right heart failure on exam should be considered a medical emergency, because this defines a patient population with a very high rate of mortality. Patient instability may preclude making a formal diagnosis of hemodynamically unstable PE. Bedside transthoracic echocardiogram demonstrating evidence of right heart failure in the setting of a high pretest clinical suspicion for PE may assist in making a reasonable clinical diagnosis. The following should be considered:

- Start therapy immediately with low molecular weight heparin (Lovenox 1 mg/kg subcutaneously bid) or unfractionated heparin.
Use of this agent must be considered carefully in the multisystem trauma patient.
Protamine can be used to reverse the effects of low molecular weight heparin, although dosing may be more difficult to predict than when used to reverse the effects of unfractionated heparin.
Do not give fluid boluses for hypotension if significant evidence of right heart failure exists.
Jugular venous pressure elevation noted or central venous pressure > 18 mm Hg if being transduced from a central venous catheter with a tip known to be in the superior vena cava.

- Support blood pressure (MAP > 60 mm Hg, DBP > 40–45 mm Hg) using epinephrine or dopamine.
- Norepinephrine is also acceptable, although reflex vagal stimulation may result in a decreased cardiac output relative to what is seen with epinephrine.
- Consider the addition of Milrinone or Dobutamine if persistent shock noted.
 - Milrinone may be a superior choice due to an improved ability to directly lower pulmonary vascular resistance.
 - Consider the use of thrombolytic therapy if hypotension is persistent or cardiopulmonary arrest develops.
 - Absolute versus relative contraindications to the use of such agents must be considered carefully in the multisystem trauma patient.

Prevention of Venous Thromboembolism

Given the high risk of venous thromboembolism complications associated with multisystem trauma patients (especially those with orthopaedic and spine injuries), prevention remains the key to avoiding adverse consequences.

- All trauma patients should receive chemical prophylaxis for venous thromboembolism disease.
 - Low molecular weight heparin (Lovenox 30 mg subcutaneously bid) should be administered.
 - Highest risk patients (spine injury, expected prolonged immobilization, and orthopaedic injury) should also have intermittent pneumatic compression device therapy initiated.
- Trauma patients with a significant clinical contraindication to chemical prophylaxis should receive intermittent pneumatic compression device therapy.
 - Highest risk patients (spine injury, expected prolonged immobilization, and orthopaedic injury) should also be considered for removable intravenous vena cava filter placement.

Aspiration Pneumonitis

In patients with compromised pulmonary status secondary to aspiration, they should be managed supportively, with positive pressure ventilation and a lung
protective strategy as described previously in this chapter. Empiric antibiotics are NOT indicated for isolated aspiration. Antibiotic therapy should be based on concomitant injuries. Witnessed, or clinically suspected, aspiration usually results in a chemical pneumonitis and does not commonly lead to an infectious pneumonia. Aspiration pneumonitis generally presents with an infiltrate in a dependent portion of the lungs (especially the right lower lobe, left lower lobe, or the superior segments of the right or left upper lobes) and may be associated with an impressive fever, moderate leukocytosis, worsening oxygenation, and evidence of consolidation on physical exam. Antibiotics are not recommended for this process in the first 24 hours after a suspected aspiration event. Failure to demonstrate some improvement after this time should prompt consideration of a secondary bacterial pneumonia infectious process.

Empiric antibiotic therapy with a broad-spectrum agent (meropenem, pipericillin/tazobactam, and cefepime) should then be initiated due to a high rate or oral colonization with multidrug-resistant organisms in the combat critical care setting. Specific coverage targeting anaerobic organisms is not necessary in the absence of poor dentition, although anaerobic coverage will be included with most of the empiric broad-spectrum agents discussed previously. Specific coverage for methicillin-resistant *Staphylococcus aureus* (MRSA) is not necessary unless the patient is believed to be previously colonized with this organism. If available, bronchoscopy with directed bronchoalveolar lavage or blind aspiration through an endotracheal tube can be used to determine the duration of antibiotic therapy. Bronchoscopy should be performed in any case where foreign body aspiration (teeth, etc) is suspected. Antibiotics should be stopped at 72 hours if cultures do not demonstrate a dominant organism. If a dominant organism exists, antibiotics can be discontinued at 5–7 days.

Combat-Associated Healthcare Pneumonia

Combat-associated healthcare pneumonia denotes a healthcare-associated pneumonia that is obtained by a patient while being treated in a combat medical facility. The distinction is important, because many combat medical facilities in Iraq and Afghanistan are associated with increased rates of patient colonization with multidrug-resistant bacteria. Patients who develop pneumonia after being in the combat medical system for at least 72 hours should be considered to be colonized with multidrug-resistant organisms, and empiric therapy should include meropenem, doripenem, pipericillin/tazobactam, or cefepime. Ertapenem is not recommended due to poor coverage of *Pseudomonas aeruginosa*.

Vancomycin or Linezolid should be added if MRSA is clinically suspected (a known history of MRSA colonization), and double coverage for *Pseudomonas* should be included if associated *Pseudomonas* bacteremia is suspected. Antibiotic coverage should be tailored to the narrowest spectrum possible based on respiratory and blood culture results, and duration of therapy should continue for 5–7 days if clinical improvement is noted. Failure to improve by 7 days should
prompt a reconsideration of the diagnosis, repeated efforts to obtain cultures, consideration of other infectious organisms, and a search for defects in the immune system (neutrophil number/function, B-cell function, T-cell function).

Cardiac Considerations

Cardiac Tamponade

Acute cardiac tamponade is seen in the combat setting as a result of either blunt or penetrating thoracic trauma. Cardiac tamponade in the setting of trauma is a surgical emergency. Hemodynamically significant pericardial effusions associated with trauma generally may be small volume collections of blood that result in the collapse of the cardiac chambers; however, any pericardial effusion in the setting of trauma requires immediate surgical evaluation. Tamponade physiology, initially, may be subtle and vary with respiration, but eventual cardiovascular collapse can quickly develop.

- Beck’s Triad suggests the diagnosis of cardiac tamponade.
 - Hypotension, jugular venous distention, muffled heart sounds.
- The diagnosis can be confirmed with transthoracic echocardiogram.
- Assessment of cardiac enzymes has no role in the diagnosis of cardiac tamponade.
- Urgent pericardial drainage is necessary. In the setting of trauma, emergent percutaneous pericardial drainage may be considered as a temporizing method in the absence of immediately available surgical care.
 - Via an unguided subxyphoid needle directed toward the left nipple in an emergency.
 - Echocardiographically guided needle insertion for pigtail drainage, if available.
- IVV may need to be aggressively supported to ensure adequate cardiac filling.
- Inotropic therapy with Dobutamine may temporize the condition until elimination of the pericardial fluid collection has been accomplished outside the setting of trauma-associated tamponade.
- Proximal aortic dissection should be strongly considered in patients with blunt trauma who develop acute cardiac tamponade.

Blunt Cardiac Injury

Blunt cardiac injury presents as a clinical consequence of blunt thoracic trauma in the combat setting. It is likely underdiagnosed because the vast majority of patients with cardiac contusion have minimal-related symptoms, and significant consequences are uncommon. Severe blunt cardiac injury symptoms are usually those referable to musculoskeletal pain, although CHF may be present if the degree of injury was significant enough to result in myocardial wall or valve dysfunction. When valve dysfunction occurs, it usually represents improperly functioning chordae tendinae because of myocardial wall dysfunction. Diagnosis is usually made by demonstrating focal cardiac wall or valve dysfunction in a
patient with recent blunt thoracic trauma. Cardiac enzymes do not have a role in the diagnosis or management of blunt cardiac injury. Management is supportive and centers around cardiac monitoring to detect the rare patient who develops significant arrhythmias or mechanical heart dysfunction (severe acute valve regurgitation, free wall rupture, and ventricular septal wall rupture).

Acute Coronary Syndrome

ST elevation myocardial infarction (STEMI) is usually caused by the rapid accumulation of fibrin at the site of a previously stable atherosclerotic plaque in a coronary artery that results in significant (often transmural) cardiac muscle death. To prevent further damage, management centers on opening the vessel as quickly as possible; decreasing oxygen demand by the heart; and monitoring closely for the development of mechanical complications, CHF, and potentially lethal arrhythmias, such as ventricular tachycardia and fibrillation.

- Aspirin 81 mg PO, chewed as quickly as possible and daily thereafter.
- Plavix 300 mg load followed by 75 mg PO daily.
- A glycoprotein 2B/3A inhibitor should be considered (Eptifibatide).
- Supplemental oxygen to maintain SpO\textsubscript{2} > 96%–98%.
- Sublingual nitroglycerin (spray or tablet) as necessary for pain.
 - Rapid hypotension development with nitroglycerin suggests right-sided disease.
- Morphine IV as necessary for pain.
- Thrombolytic therapy (Tenecteplase, Reteplase) should be given ideally in <1 hour (within 3 hours is ideal, 12 hours is acceptable).
- If an invasive cardiac catheterization laboratory is available that is favored over thrombolytic therapy.
- Beta blocker (Lopressor 5 mg IV initially) if no evidence of acute CHF.
- Beta blocker per the current American Heart Association guidelines (Lopressor 5 mg IV incrementally or Esmolol drip) to target heart rate < 60–70 and SBP < 110.
- If heart rate target met with beta blocker, but SBP is >110, consider the following adjuncts:
 - Nitroglycerin gtt (dose may be limited by headache or the presence of right-sided disease).
 - Nicardipine gtt.
 - Nitroprusside gtt.
- **If evidence of CHF:**
 - Start nitroglycerin gtt.
 - Lasix q6h IV versus gtt to affect diuresis/preload reduction.
 - Consider nicardipine versus nitroprusside gtt to titrate blood pressure/afterload reduction.
 - Dopamine or Milrinone can be considered if SBP < 90.
 - Dobutamine can be considered; however, this agent will increase myocardial oxygen demand.
Aortic balloon pump is favored in this setting, if available.

- Continuous cardiac and hemodynamic monitoring (arterial line, central venous catheter with central venous pressure monitoring) should be continued until transferred to a higher medical treatment facility.
- An ACE (angiotensin-converting enzyme) inhibitor should be started within 24 hours of the index symptoms.
- A statin anticholesterol medication should be started as soon as possible.

Non-STEMI (NSTEMI) and unstable angina are closely related processes whereby a platelet-rich clot forms in the region of a previously existing atherosclerotic plaque. Symptoms associated with NSTEMI/unstable angina usually represent supply/demand mismatch in the setting of a slowly progressive clot, although the clot may progress quickly in some. It should be regarded as a medical emergency. NSTEMI and unstable angina are physiologically the same process and are only distinguished by the presence of myocardial damage, as evidenced by cardiac enzyme elevation, in the setting of NSTEMI. Management is similar to STEMI; however, fibrinolytics plays a less prominent role, and antiplatelet therapy plays a more prominent role due to the relative predominance of platelets over fibrin in coronary vessel clot associated with NSTEMI/unstable angina. Goals remain to improve coronary blood flow rapidly, decrease myocardial oxygen demand, and monitor for complications of the disease process. Progression to STEMI needs to be carefully watched because it could affect therapy.

- Aspirin 81 mg PO, chewed as quickly as possible and daily thereafter.
- Plavix 300 mg load, followed by 75 mg PO daily.
- A glycoprotein 2B/3A inhibitor should be considered (Eptifibatide).
- Supplemental oxygen to maintain \(\text{SpO}_2 > 96\%–98\% \).
- Sublingual nitroglycerin (spray or tablet) as necessary for pain.
 - Rapid hypotension development with nitroglycerin suggests right-sided disease.
- Morphine IV as necessary for pain.
- Thrombolytic therapy (Tenecteplase, Reteplase) should be given ideally in <1 hour (within 3 hours is ideal, 12 hours is acceptable).
- Beta blocker per the current American Heart Association guidelines to target heart rate < 60–70 and SBP < 110.
- If heart rate target met with beta blocker, but SBP > 110, consider the following adjuncts:
 - Nitroglycerin gtt (dose may be limited by headache or the presence of right-sided disease).
 - Nicardipine gtt.
 - Nitroprusside gtt.
- If evidence of CHF:
 - Start nitroglycerin gtt.
 - Lasix q6h IV vs gtt to affect diuresis/preload reduction.
- Consider nicardipine vs nitroprusside gtt to titrate blood pressure/afterload reduction.
- Dopamine or Milrinone can be considered if SBP < 90.
- Continuous cardiac and hemodynamic monitoring (arterial line, central venous catheter with central venous pressure monitoring) should be continued until transferred to a higher echelon of care.
- An ACE inhibitor should be started within 24 hours of the index symptoms.
- A statin anticholesterol medication should be started as soon as possible.
- Aspirin 81 mg PO, chewed as quickly as possible and daily thereafter.
- Plavix 150 mg load followed by 75 mg PO daily.
- A glycoprotein 2B/3A inhibitor should be started (Eptifibatide).
 - Most important in patients with recurrent pain, ST segment depression or dynamic ST segment changes.
- Supplemental oxygen to maintain SpO₂ > 96%-98%.
- Sublingual nitroglycerin (spray or tablet) PRN pain.
 - Rapid hypotension development with nitroglycerin suggests right-sided disease
- Morphine IV PRN pain.
- Beta blocker (Lopressor 5 mg IV initially) if no evidence of acute congestive heart failure.
- Beta blocker (Lopressor 5 mg IV incrementally or Esmolol drip) to target heart rate < 60-70 and SBP < 110.
- If heart rate target met with beta blocker, but SBP > 110, consider the following adjuncts:
 - Nitroglycerin gtt (dose may be limited by headache or the presence of right-sided disease).
 - Nicardipine gtt.
 - Nitroprusside gtt.
- If evidence of CHF:
 - Start nitroglycerin gtt.
 - Lasix q6h IV versus gtt to affect diuresis/preload reduction.
 - Consider nicardipine vs nitroprusside gtt to titrate blood pressure/afterload reduction.
 - Dopamine can be considered if SBP < 90.
 - Dobutamine can be considered; however, this agent will increase myocardial oxygen demand.
- Aortic balloon pump is favored in this setting, if available.

- Continuous cardiac and hemodynamic monitoring (arterial line, central venous catheter with central venous pressure monitoring) should be continued until transferred to a higher medical treatment facility.
- An ACE inhibitor should be started within 24 hours of the index symptoms.
- A statin anticholesterol medication should be started as soon as possible.

Congestive Heart Failure
CHF represents a clinical diagnosis describing the inability of the heart to pump adequately relative to a given preload. Resulting clinical signs and symptoms reflect left-sided heart failure (pulmonary edema, pleural effusions), as well as right-sided failure (jugular venous distention, dependent edema, liver and spleen engorgement). Systolic and diastolic dysfunction can both cause CHF when IVV becomes relatively excessive, as can acute or chronic valve dysfunction. Acute valve dysfunction can be seen in the setting of blunt cardiac contusion injury. Goals of CHF management center around preload reduction, afterload reduction, and improved inotropic function.

Preload Reduction
- Diuretic therapy.
 - Loop diuretic (Furosemide, Bumetanide).
 - Consider IV therapy for severe CHF; continuous gtt for refractory CHF.
 - Minimize salt intake as extracellular fluid volume is directly proportional to total body salt.
 - Total salt intake should be <1.5–2.0 g/d.
- Nitroglycerin drip.
 - Vasodilates venous system.
- Nitroprusside drip.
 - Relatively balanced arterial and venodilator.
- Atrial natriuretic peptide therapy (Nesiritide).
 - Vasodilates arteries, but also affects significant natriuresis.
 - For refractory CHF, no mortality benefit.

Afterload Reduction
- Goal SBP < 100–110 mm Hg.
- Beta-blocker therapy:
 - Carvediolol favored.
 - Long active Lopressor can also be considered.
 - Do not start a new beta blocker in the setting of acute CHF.
 - Patients already on a beta blocker, who develop new CHF, should have the dose dropped in half, **BUT NOT COMPLETELY DISCONTINUED**.
- Nicardipine gtt in the acute setting.
- ACE inhibitor therapy should be started early and titrated aggressively.
- Consider the addition of Hydralazine, Clonidine, or Minoxidil if blood pressure difficult to control.
- Nitroprusside or Nesiritide can be used transiently in the acute setting as described in the section on Preload Reduction.

Inotropic Therapy
- There is no mortality benefit to using inotropic therapy in the setting of
acute CHF when complicating underlying systolic dysfunction.
 ◦ However, it can be considered as a temporizing measure until more
 definite evaluation and care are available.
• Dobutamine or Milrinone can be considered in acute CHF with SBP > 100
 mm Hg.
• Dopamine should be considered if SBP < 90 mm Hg.
• An aortic balloon pump should be used, if available, when CHF complicates
 the period surrounding the presentation of an acute myocardial infarction
 or when aortic or mitral valve dysfunction is the cause of the CHF.

Other Aspects of Therapy
• Follow electrolytes closely.
 ◦ Normalize serum magnesium and potassium.
 ◦ Phosphorous levels below 1.0 mg/dL should be repleted.
 ◦ Hyponatremia is a marker for increased mortality in the setting of
 CHF, but there is no benefit in correcting the hyponatremia as a
 specific therapeutic aim.
 ♦ It will correct on its own as CHF improves; the kidney sees better
 forward flow, and free water retention decreases.
• Watch for evidence of arrhythmias.
 ◦ Patients with an ejection fraction < 30%–35% should be considered
 candidates for automated implantable cardioverter defibrillator
 placement unless life expectancy is <6–12 months.

Neurological Considerations

Traumatic Brain Injury
The medical management of TBI will be briefly reviewed and can be explored in
greater detail in Chapter 15, Head Injuries. There is nothing about medical
management that can reverse primary brain injury caused by a traumatic event,
but aggressive critical care management can greatly decrease the subsequent
evolution of secondary brain injury. The critical care management of TBI
casualties focuses upon the tenets of adequate oxygenation and adequate volume
to minimize the risk of secondary brain injury.

Cerebrovascular Accident/Stroke Management
Two questions are vital to answer immediately when a patient presents with
symptoms suggestive of a cerebrovascular accident (CVA), because they dictate
the therapeutic approach:
• When did the stroke occur?
 ◦ If fibrinolytic therapy is going to be considered, it should be delivered
 within 6 hours of symptom onset (better outcomes associated with
 early <3-hour therapy).
• Is the stroke hemorrhagic or nonhemorrhagic?
- If nonhemorrhagic, there is a risk of hemorrhagic conversion (may be seen in up to 10%-15% of patients with middle cerebral artery territory strokes)? Document and follow serial neurological exams closely.
- Assess airway patency serially and have a low threshold to place on mechanical ventilation if necessary.
- AVOID HYPOXEMIA (keep SpO₂ > 90% and PaO₂ > 60 mm Hg).
- Avoid hyperglycemia and hypoglycemia (keep glucose 90–140 mg/dL).
 - Utilize insulin drip if necessary.
- Keep head of bed flat unless aspiration risk is present, patient has been placed on mechanical ventilation, stroke territory is large, or there is evidence of elevated intracranial hypertension.
 - If such relative contraindications to flat positioning exist, place patient in 30° head-of-bed elevation.
- Start therapy with aspirin within 24 hours if no evidence of intracranial hemorrhage.
- CAUTION: THROMBOLYTICS SHOULD ONLY BE GIVEN IN ACCORDANCE WITH CURRENT AMERICAN HEART ASSOCIATION GUIDELINES REGARDING TIMING FROM THE ONSET OF SYMPTOMS AND STROKE SEVERITY.
- Thrombolytics (Tenecteplase, Alteplase, Reteplase) should be given if no significant contraindications exist, the stroke is associated with significant clinical deficits, and there is no evidence of intracranial hemorrhage.
 - Ensure that it is possible to lower SBP < 185 mm Hg and DBP < 110 mm Hg.
- Hypertension management.
 - Hypertension in the setting of CVA usually reflects either baseline blood pressure levels or a reaction to the stroke itself and may be dangerous to normalize in the acute setting.
 - SBP > 220 mm Hg or DBP > 140 mm Hg should be treated using short-acting, titratable IV medications, such as Labetalol or Nicardipine, with a goal of producing a 15% drop in blood pressure values.
 - Previously used outpatient antihypertensives should be initiated within 24–48 hours of the CVA and goal blood pressures of SBP < 130 mm Hg and DBP < 80 mm Hg achieved slowly over days to weeks.
 - Other conditions that may coexist with the CVA that may dictate a more aggressive approach to rapid blood pressure titration (even normalization of blood pressure) using short-acting IV agents include:
 - Unclipped cerebral aneurysms associated with subarachnoid hemorrhage.
Aortic dissection.
- Acute myocardial infarction.
- Body temperature regulation: MAINTAIN NORMOTHERMIA.
 - Efforts to normalize body temperature are appropriate.
 - Temperature regulation by the patients may not be normal.
 - Hyperthermia is associated with worse outcomes and should be avoided.
 - Acetaminophen PO or rectum may be beneficial in this setting.
 - Therapeutic hypothermia in the setting of CVA is not supported by the literature at this time outside of clinical research protocols.
 - Other adjunctive agents.
 - Nimodipine has been associated with improved clinical outcomes when used in the management of acute subarachnoid hemorrhage.
 - Free radical scavengers have been suggested to have some benefit in CVA, but are not recommended for routine care at this time.

Gastrointestinal Considerations

Stress Gastritis
Indications for stress gastritis prophylaxis include several factors common in the combat critical care setting that predispose patients to develop stress gastritis, of particular note coagulopathy, mechanical ventilation greater than 48 hours, shock, multisystem trauma, and burn >35% of the total body surface area. Since most patients in the combat setting who have a need for critical care support have at least one of these risk factors, prophylaxis against stress gastritis should be considered necessary in all such patients.

Pantoprazole 40 mg IV Daily or Ranitidine 50 mg IV or Subcutaneously Every 8 Hours
Sucralfate is not recommended in this setting.

Acalculous Cholecystitis
Trauma patients have several potential risk factors for the development of acalculous cholecystitis, significant among them multisystem trauma, hypotension, and burns. The diagnosis can be very difficult to make at bedside, but is extremely important to make in a timely fashion, because a delay in therapy can result in significant morbidity or mortality.

- Diagnosis suspected with new fever, vague abdominal discomfort, and leukocytosis.
 - Mild alkaline phosphotase elevation.
 - Conjugated hyperbilirubinemia (elevated Tbili; Dbili/Tbili > 0.5).
- Confirmation of the diagnosis can be made with RUQ (right upper quadrant) ultrasound.
 - If normal, but condition suspected, laparoscopic or open laparotomy
should be performed.

- A HIDA (hepatobiliary iminodiacetic acid) scan can be performed at major medical centers prior to surgery if clinically stable, but this will not be available in the combat care setting.

- Empiric antibiotic therapy should be started when the diagnosis is suspected.
 - Imipenem, pipericillin/tazobactam, ampicillin/sulbactam, or a third-generation cephalosporin with metronidazole are all reasonable choices.
 - Vancomycin or Linezolid should be added only if the patient is known to be colonized with MRSA.

- Urgent consultation for operative management or interventional drainage of the condition should be obtained before frank necrosis and perforation of the gallbladder occurs.

Renal Considerations

The most relevant forms of renal abnormalities in the combat setting include prerenal azotemia, acute tubular necrosis (ATN), rhabdomyolysis, nephrolithiasis, and iatrogenic complications of medications. Most of these entities do not involve permanent kidney damage if recognized and managed appropriately. For those that do develop significant azotemia (either transiently or permanently), there usually exists a reasonable window of at least 24–36 hours to facilitate evacuation out of the theater of operation. In general, a reliable mechanism for providing dialysis does not exist in the wartime environment until Role 4 is reached. Early recognition of renal complications and appropriate early medical management are key to avoiding significant life-threatening complications.

Prerenal Azotemia and Acute Tubular Necrosis

Although these two entities are separate clinical conditions, they are commonly related in the combat patient. Prerenal azotemia represents the development of renal failure (marked by a decreased CrCl and complications such as elevated BUN, acid-base abnormalities, hypervolemia, and electrolyte disturbances such as hyperkalemia) due to hypoperfusion of the kidneys. ATN develops usually as a result of hypoperfusion with resultant damage to renal tubule cells, especially in the region of the thick ascending loop of Henle. Damaged tubule cells may form “muddy brown casts” that can be seen on urine microscopy and may obstruct tubules, leading to several local hemodynamic consequences.

- Prerenal azotemia diagnosis.
 - Decreased urine output, elevated Cre, BUN/Cre > 20, UNa < 10 mg/dL.
 - FeNa (%) = (UNa/SNa)/(SCre/UCre) × 100.
 - FeNa < 1% is consistent with a prerenal etiology of renal failure
(where BUN = blood urea nitrogen, Cre = creatinine, UNa = urine sodium, FeNa = fractional excretion of sodium, SNa = serum sodium, SCre = serum creatinine, and UCre = urine creatinine).

- **ATN diagnosis.**
 - Decreased urine output, elevated creatinine, BUN/Cre 10–20, UNa >20 mg/dL.
 - FeNa (%) = (UNa/SNa)/(SCre/UCre) × 100.
 - FeNa >1% is consistent with a non-prerenal etiology of renal failure.
 - Muddy brown casts on urine microscopy.

- **Prerenal azotemia and ATN management.**
 - Ensure adequate IVV.
 - There is no significant clinical benefit to converting anuric renal failure to oliguric failure, although patients who present in anuric renal failure do worse than those who are oliguric on presentation.
 - If IVV repletion is ensured and urine output is low, diuretic use can be considered in the patient with low urine output if IVV overload is a concern.
 - In the case of ATN, a period of 1–3 weeks may pass before renal recovery is noted.
 - An increase in urine volume occurs that precedes any true improvement in CrCl.
 - Watch closely for the development of hyperkalemia, acidemia due to an anion gap metabolic acidosis, IVV overload, pericardial rubs, and extreme uremia.
 - These are indications for emergent hemodialysis.

Rhabdomyolysis

Rhabdomyolysis results in the setting of crush injury that causes significant destruction of skeletal muscle. CKT (creatinine kinase), heme-pigmented myoglobin, and phosphate elevations are all released in significant amounts. **Heme-pigmented proteins may result in an ATN.** One unique feature of this form of renal failure is that it is associated with hypocalcemia. **Prevention of renal failure and its consequences is one of the fundamental priorities of the management of rhabdomyolysis.**

- **Diagnosis:** Red/brown low volume urine, positive urine dipstick for myoglobin in the absence of red blood cells on urine microscopy, and CKT elevation (may be >50,000–100,000).
- **Aggressively ensure adequate IVV repletion.**
 - Replete with isotonic crystalloid (0.9% NS or LR may also be utilized, but consider the risk of hyperkalemia in the setting of rhabdomyolysis
and associated renal failure).

- Goal urine output 150–300 mL/h; consider diuretic if IVV has been repleted.
- Bicarbonate therapy can be considered—titrate to a urine pH of 6.5–7.
 - Dose: 150 mEq NaHCO$_3$ (3 standard amps) in 1 L D5W at 100 mL/h initially.
 - No definite clinical benefit to this approach has been demonstrated.
- Mannitol diuresis is not recommended in the peritrauma setting due to possible IVV depletion.
- Follow serum electrolytes closely, especially potassium, phosphorous, and ionized calcium.

Nephrolithiasis

Nephrolithiasis represents one of the most common reasons for soldiers to be evacuated from the combat theater in both Operation Iraqi Freedom and Operation Enduring Freedom, and surgery of renal stones was the most common elective surgery performed in theater. Risk factors related to the combat environment include **low urine volume due to IVV depletion, as well as a diet that may be high in protein**. The majority of stones are calcium based (approximately 80%) and are therefore easy to visualize with radiographic studies. Many will eventually pass on their own, but patients with a history of recurrent stones, family history of stones, or complicating anatomical features leading to renal failure may necessitate surgical therapy by a urologist.

- Diagnosis of nephrolithiasis suggested by waxing/waning pain (radiating to the flank or scrotum, generally depending on level of obstruction) and microscopic hematuria.
- The stone may be visualized on KUB, CT/nephrolithiasis protocol, or ultrasound.
 - Start with KUB; subsequent studies based on availability.
- Adequate intravascular hydration is extremely important.
- Parenteral intravenous medications are frequently needed for pain control.
- Medical therapy can be considered with an alpha-blocking medication, such as Tamsulosin (0.4 mg PO daily).
- Consultation with a urologist early is important and evacuation to a medical treatment facility where surgery can be performed if the stone does not pass can be considered.

Iatrogenic Complications of Therapy (Medications, Contrast Dye)

Several medications may cause or contribute to the worsening of renal function in the multisystem trauma patient. The most common offenders are medications such as diuretics that may be used before IVV repletion has been ensured, resulting in prerenal azotemia or even ATN. Nonsteroidal antiinflammatory medications used for pain management may result in renal failure by altering local glomerular perfusion pressure. Penicillin medications may be associated with acute interstitial nephritis. **The most important single agent to be aware of**
with respect to the kidneys is intravenous contrast dye, which may cause an associated ATN (contrast dye-associated nephropathy). These agents are iodinated and either ionic or nonionic. Most contrast dye used currently are nonionic, which has decreased the rate of renal failure.

- ATN resulting from intravenous contrast dye generally resolves within days, in contrast to the 1–3 week recovery expected from other causes of ATN.
- Assurance of adequate IVV is most important for the prevention of contrast dye nephropathy.
- The most important aspect of contrast dye-associated nephropathy is aimed at prevention with precontrast hydration. No benefit has been shown with either bicarbonate therapy of N-acetylcysteine (Mucomyst).

Disseminated Intravascular Coagulation/Thrombotic Thrombocytopenic Purpura

Disseminated intravascular coagulation (DIC) usually identifies patients with a higher likely mortality both due to underlying injury and possibly DIC itself. The process results from a prothrombotic state wherein fibrin is deposited throughout the body, resulting in the consumption of coagulation factors, hemolytic anemia, and thrombocytopenia. This leads to an inability to clot blood effectively, and patients are noted to have petechiae and frank bleeding from IV sites, surgical wounds, and mucosal barriers of the body. **Thrombotic thrombocytopenic purpura** (TTP) is caused by abnormal activity of von Willebrand’s factor, resulting in activation and aggravation of platelets. Laboratory abnormalities include thrombocytopenia and hemolytic anemia. The classic clinical pentad includes: fever, anemia, renal failure, thrombocytopenia, and neurological abnormalities (especially seizures).

- DIC diagnosis:
 - Hemolytic anemia, thrombocytopenia, and fibrinogen decrease (usually <100).
 - INR elevation (KEY DISTINCTION FROM TTP—THERE IS NO INR ELEVATION WITH TTP).
- DIC management:
 - Largely supportive; correct the cause of DIC.
 - Cryoprecipitate, fresh frozen plasma, platelet, and red blood cell transfusion IF CORRECTABLE ETIOLOGY FOR DIC IS IDENTIFIED.
- TTP diagnosis:
 - Hemolytic anemia, thrombocytopenia, and fibrinogen decrease.
 - INR IS USUALLY NORMAL.
 - Clinical pentad of fever, anemia, thrombocytopenia, renal failure, and neurological abnormalities.
- TTP management:
 - Blood products are largely without benefit.
- High-dose corticosteroids.
- Plasma exchange transfusions.
- Unrecognized and untreated TTP can have an extremely high mortality.

Heparin-Induced Thrombocytopenia

Heparin-induced thrombocytopenia (HIT) is caused by antibodies directed at the heparin-platelet factor 4 complex. It usually presents approximately 4–5 days after the initiation of heparin products, but can present suddenly in susceptible patients who have received heparin within the previous 3 months. The risk of the development is 1%–5% with unfractionated heparin and <1% with low molecular weight heparin. The diagnosis is suspected when the platelet count suddenly drops by 50% or to a value of <100,000 (if platelet count was normal initially). Confirmation of the diagnosis will generally not be possible in the combat care setting, but higher medical treatment facilities can confirm the diagnosis by sending HIT antibody studies in the appropriate clinical context.

- Suspected HIT should prompt immediate discontinuation of all heparin products (including low molecular weight heparin).
- Therapeutic anticoagulation should be initiated in full anticoagulation doses, if possible.
 - Thrombosis occurs in >50% of HIT patients.
 - Antithrombin agents that can be used in the combat environment require titration based on activated partial thromboplastin time levels:
 ♦ Argatroban.
 ♦ Hirudin.
 - Fondaparinux is an anti-Xa inhibitor that can be considered at Role 4 facilities that have access to onsite anti-Xa level measurement capability.
- Warfarin should NOT BE USED in the management of HIT patients unless an antithrombin agent is in use at full therapeutic anticoagulation doses.

Endocrine Considerations

The majority of endocrine emergencies that happen in the combat setting occur in patients with preexisting conditions (known or not) who undergo a clinical decompensation related to either a stress in the environment or lack of access to maintenance medical care (insulin in the case of the diabetic patient). While infrequently seen, the most likely endocrine emergencies to be aware of are diabetic ketoacidosis, hyperglycemic hyperosmolar syndrome, and adrenal insufficiency.

Diabetic Ketoacidosis/Hyperglycemic Hyperosmolar Syndrome

- Diagnosis of diabetic ketoacidosis (DKA):
 - Elevated glucose (200–600); long-standing DKA may have normal
glucose.
 - Anion gap metabolic acidosis; elevated serum and urine ketoacidosis.
 - Glucosuria if serum glucose is elevated.
 - Dehydration (generally <6–8 L of total body water deficit).

- Diagnosis of hyperglycemic hyperosmolar syndrome (HHS):
 - Severely elevated glucose (600–1,500).
 - Severe intracellular dehydration due to extreme osmotic shifts.
 - Mild anion gap metabolic acidosis may be present, but is not a dominant clinical feature.
 - Severe glucosuria.
 - Severe dehydration (>8–10 L of total body water deficit).

- Management of DKA and HHS:
 - Correct the cause of DKA/HHS development (infection, trauma, etc).
 - Management is similar in many ways; differences will be highlighted.
 - Bolus 10 units of regular insulin IV; start insulin drip at 5 units of regular insulin IV per hour.
 - Hold on bolus if potassium < 3.0; do not give insulin until serum potassium > 3.0.
 - Do not correct glucose > 100 per hour or 1,200 in 24 hours.
 - Bolus 2 L of 0.9 NS in the first hour.
 - Repletion of volume is vital for both conditions; HHS will require substantially more isotonic crystalloid to accomplish this.
 - Give 4–6 L of 0.9 NS in the first 6 hours for DKA.
 - Give 6–8 L of 0.9 NS in the first 6 hours for HHS.
 - Subsequent 0.9 NS requirements will be determined by assessment of the adequacy of the IVV status.
 - After repletion of the IVV, change base fluid from isotonic crystalloid (0.9 NS) to hypotonic crystalloid (½ NS).
 - Check glucose hourly using point-of-care testing while adjusting insulin drip.
 - Measure serum electrolytes every 1–2 hours until potassium stable for >4 hours and glucose stable for >4 hours.
 - When potassium < 4.5 mg/dL, add 20 mEq KCl/L to current intravenous fluid.
 - Additional supplementation will be needed (orally as a KCl elixir) as well.
 - Potassium replacement needs are usually profound due to total body loss of potassium and magnesium due to diuresis, as well as transcellular shifts associated with insulin utilization.
 - When serum glucose drops below 250 mg/dL, add D5 to whatever
fluid is being utilized.

- **WHEN TREATING DKA, DO NOT STOP INSULIN INFUSION UNTIL THE ANION GAP IS CLOSED—HYPOGLYCEMIA IS TREATED WITH THE ADDITION OF DEXTROSE AND A DECREASE IN INSULIN DOSE, BUT CESSATION OF INSULIN WILL RESULT IN THE RETURN OF DKA.**

Adrenal Insufficiency

Adrenal insufficiency should be anticipated in patients requiring surgery who are taking corticosteroids at doses in excess of the equivalent of prednisone 10–20 mg daily. It is also seen clinically in patients who have taken such doses for more than 5–7 days at any point in the previous year. Rarely, adrenal insufficiency results from infarction of the bilateral adrenal glands associated with hypovolemic shock states. Unfortunately, there is no universal agreement on the laboratory diagnosis of adrenal insufficiency, so a high index of clinical suspicion should be present in patients with a known history of steroid use. **One clinical scenario that can be suggestive of adrenal insufficiency is a patient with a history of steroid use who is hypotensive (sepsis, hemorrhage, etc), who is not responsive to pressor therapy, and who does not have an appropriate tachycardia. The presence of hyponatremia and/or hyperkalemia may also suggest adrenal insufficiency.**

- Treatment of acute adrenal insufficiency: Hydrocortisone 200 mg IV, then 100 mg IV q8h.
- If hyponatremia and/or hyperkalemia persists despite hydrocortisone therapy, add fludrocortisone 0.1 mg PO every morning.

ICU Prophylaxis

Ventilator-Associated Pneumonia/Combat-Related Ventilator-Associated Pneumonia

- Assess daily the need for continued mechanical ventilation and discontinue as quickly as possible.
- Use a Hi-Lo Tracheal Tube to allow removal of subglottic secretions that collect above the endotracheal tube cuff in all patients expected to be intubated >96 hours.
- Provide oral care with chlorhexidine solution q4h.
- Do not routinely change out ventilator circuitry unless mechanical failure is present or visible contamination is noted.
- Keep head of bed 30°–45°at all times while intubated (unless absolute contraindication exists).
- Perform regular surveillance cultures of respiratory secretions in the ICU and regularly update the biogram describing organisms/susceptibilities that have been isolated.
- Minimize the empiric use of antibiotics.
- When treating a suspected combat-related ventilator-associated pneumonia (CRVAP):
- Treat aggressively with broad-spectrum antibiotics based on local biogram (see section on Pulmonary Medicine).
- Culture respiratory secretions, as well as blood; tailor antibiotic regimen based on culture results.
- Discontinue all antibiotics if cultures are negative at 72 hours and patient is improving.
- Continue CRVAP therapy for 7 days total if cultures demonstrate a dominant organism, and a Gram stain showed a significant number of leukocytes.

 - When a multidrug-resistant organism is isolated, consider cohorting patients with similar isolates to one area of the ICU away from other patients.
 - Consider terminal cleaning of a part of the ICU after a multidrug-resistant organism has been isolated and the patient treated.

Deep Venous Thrombosis Prophylaxis

See previous content within this chapter.

Glucose Control

- Most critical care patients in the combat setting should have glucose targeted between 140–200 mg/dL.
- Insulin drips should be initiated in any critically injured patient who has two or more consecutive glucose readings >180 mg/dL.

Nutrition

- Enteral nutrition is favored over venous routes, if possible.
- Duodenal tube placement is favored over gastric tube placement, but gastric is acceptable as long as residuals remain <500 mL/4 h.
 - Total parenteral nutrition may be available at some Role 3 facilities if full-dose enteral nutrition is not able to be used by 72 hours.
 - The risk of infection related to total parenteral nutrition use may be driven more by the duration of central venous access and number of times the port is accessed than the actual content of total parenteral nutrition.
- Glutamine can be added to trauma patient nutrition regimens.
- Albumin should be given if the serum album is <1.
- Specialty formulas with specific additives generally offer little benefit in the acute setting.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 12

Damage Control Surgery

Introduction

Historically, the approach to the victim of severe trauma from combat wounding was surgical exploration with definitive repair of all injuries. This approach is successful when there are a limited number of injuries, the patient is not physiologically impaired, and if there are adequate resources. Extensive experience in both civilian and military trauma dictates an abbreviated surgical approach in patients with extensive injuries directed at control of hemorrhage and contamination, followed by resuscitation to normal physiology with definitive repair in a delayed fashion. This approach, termed damage control surgery (DCS), is designed to restore normal physiology prior to normal anatomy. It is well established that patients who develop the lethal triad of coagulopathy, acidosis, and hypothermia have significantly increased mortality. DCS is designed to prevent or limit the triad through rapid control of bleeding and shortened operative time.

Damage Control Surgery is defined as the rapid initial control of hemorrhage and contamination, temporary abdominal closure, resuscitation to normal physiology in the ICU, and subsequent reexploration and definitive repair after normal physiology has been restored. **Damage Control Techniques** can also be applied in extremity, thoracic, and head trauma.

A decision to apply damage control should be made early, and, in many circumstances, even before the operation is begun.

General Considerations

- Philosophy of damage control is “a live patient above all else.”
 - Avoid hypothermia.
 - Rapidly achieve hemostasis.
 - Perform initial bowel resections without anastomosis. Control contamination and reconstruct at the second operation after the patient has been stabilized and can tolerate a prolonged operation.
- **When to employ damage control.**
 - Use damage control in patients who present with or are at risk for developing:
 - Multiple life-threatening injuries.
- Acidosis (pH <7.25).
- Hypothermia (temperature <34°C).
- Shock on presentation.
- Combined hollow viscus and vascular or vascularized organ injury.
- Coagulopathy (INR >1.4).
- Mass casualty situation.

The use of specific physiological criteria/lab values to determine when to employ damage control is of questionable utility because these represent borderline physiological states in which the patient may already be unsalvageable. The earlier DCS is applied in patients at risk, the better the outcomes.

- Take into account ability to control hemorrhage, severity of liver injury, and associated injuries.
- Pack before massive blood loss (10–15 units of packed red blood cells) has occurred.
- Injuries that typically require damage control techniques:
 - Upper abdominal injuries that are not isolated spleen injuries (duodenal, large liver injuries, pancreas, etc).
 - Penetrating pelvic injury with vascular involvement.
 - Any retroperitoneal vascular injury.

The goal of damage control is to restore normal physiology rather than normal anatomy. It is used for the multiply injured casualty, with combinations of abdominal, vascular, genitourinary, neurological, orthopaedic, and/or thoracic injury in four separate and distinct phases.

Phase 0 (Ground 0): Prehospital and Early Resuscitation

The emphasis of Phase 0 is the early recognition of patients who are at risk of developing the lethal triad and those in whom damage control techniques may be indicated. Phase 0 includes the following steps:

- Stop bleeding using tourniquets or direct pressure.
- If the patient has noncompressible bleeding, practice permissive hypotension.
- Rapid transfer to the medical treatment facility.
- Initiate damage control resuscitation.
- Prevent hypothermia.
- Measure blood gases.
- Rapid transfer to the OR.
Phase 1: Primary Damage Control Operation
- Control of hemorrhage.
- Exploration to determine extent of injury.
- Control of contamination.
- Therapeutic packing.
- Temporary abdominal closure.

General Points
- Control of hemorrhage.
 - Hemorrhage from blood vessels can be controlled by ligation, shunting, or repair of injured vessels as they are encountered.
 - The initial goal is hemorrhage control, not maintenance of blood flow.
 - For the patient in extremis, clamping or shunting of major vessels is recommended over repair.
 ◆ THINK: ⇒ fasciotomy.
 - Additional methods of hemorrhage control include balloon catheter tamponade of vascular or solid viscus injuries.
- Exploration to determine extent of injury.
 - Damage control laparotomy.
 ◆ Perform only essential resections or pack solid organs to diminish blood loss.
 ◆ Rapidly terminate the procedure to minimize hypovolemia, hypothermia, acidosis, and coagulopathy.
 ◆ Perform definitive reconstruction only during subsequent operation(s) after the patient has stabilized and can tolerate a prolonged operation.
 ◦ Assessment and stabilization/external fixation of major extremity and pelvic fractures.
 ◆ Including vascular injuries and fasciotomy.
- Control of contamination.
 - Contamination control also proceeds as injuries are encountered, utilizing clamps, primary repair, or resection without reanastomosis.
 - With multiple enterotomies, if the area of injury represents <50% of the length of the small bowel, a single resection can be undertaken.
- Temporary packing.
 - Temporary packing provides tamponade of liver, pelvic, and retroperitoneal bleeding.
 - Do not use the “pack-and-peek” technique. Once packed and bleeding controlled, leave alone until second-look operation.
 - Definitive packing is based on two basic principles:
 ◆ Pressure stops bleeding.
Pressure vectors should re-create tissue planes (attempt to re-create the pressure vectors created by the capsule of a solid organ or fill the space of that organ, not random pack placement).

- Laparotomy pads are the best commonly available packing material.
- An intervening layer—such as a bowel bag, sterile drape, absorbable mesh, or omentum—can be placed between packs and the tissue to aid in easy pack removal at relaparotomy.

- Temporary abdominal closure.
 - Multiple techniques employed:
 - Bogotá bag—sterile IV bag (3 liters) sewn to skin.
 - Vacuum pack—constructed from available materials in OR (see next page) and therefore commonly used in current combat casualties.
 - Wound VAC—commercial device not universally available in deployed setting.
 - Towel clip closure—of historical interest only; NOT RECOMMENDED because there is a high incidence of associated abdominal compartment syndrome (ACS).

- Key concepts for temporary abdominal closure.
 - Must have a nonadherent layer (eg, IV bag, sterile X-ray cover, Mayo stand cover, bowel bag) on top of the bowel and tucked under the peritoneum as far lateral as possible.
 - Perforate or “pie crust” the above layer prior to placement to allow fluid to drain out.
 - Adequate drainage tubes (eg, chest tube, Jackson-Pratt) that are interposed between gauze or towels and brought out through the top of the wound.
 - Water-tight seal over the top adherent to the skin.
 - Do not sew to the fascia.
 - Use adequate sedation.
 - Be aware that ACS can occur even if the abdomen is left open.

- The vacuum pack technique (easy, keeps patient dry, allows for expansion):
 - With fascia open, place an OR towel that is fully plastic-covered with a bowel bag, X-ray cassette bag, or Ioban drape, etc, well under the peritoneum to cover the viscera. Place a small number of central perforations to allow fluid to egress to the drains. Alternatively, place a sterile, nonadherent, perforated plastic drape
(as above) completely over the viscera and under the peritoneum and cover this with a sterile OR towel.

- Place closed-suction drains (Jackson-Pratt, modified Foley, small chest tube) above the towel at the level of the subcutaneous tissue brought out through separate stab wounds or the inferior or superior portion of the wound.
- Place lap sponges or another sterile towel to fill in the wound and sandwich the drain(s).
- Cover the entire wound with a large sticky (Ioban) drape.
- Place drains on low suction.
- Skin closure is not recommended.

Phase 2: Critical Care
- Physiological support in the post-op DCS patient is paramount to survival.
 - **Core rewarming**: Warmed resuscitative fluids, blankets, ventilator air, and environment, or commercially available products, such as Bair Hugger, ChillBuster.
 - **Reversal of acidosis**: Appropriate resuscitation with blood products, colloids, and/or crystalloid.
 - **Reversal of coagulopathy**: Factor replacement.
 - **Ventilatory support**: Using ARDSNet low tidal volume support avoiding barotrauma.
 - **Injury identification**: Perform a tertiary survey of the patient, obtain CT scans and angiography as indicated.
 - **Monitor for ACS (see below)**.
- **ACS**.
 - ACS is a condition in which increased intraabdominal pressure adversely affects the circulation/ventilation, and threatens the function and viability of the viscera.
 - Measurement is performed using urinary bladder pressure (normal = 0).
 - Measurement of bladder pressure is a good variable to test and follow; however, intervention for ACS should occur when suspected or clinically indicated.
 - Occurs in abdominal trauma accompanied by visceral swelling, hematoma, or abdominal pack use.
 - **Physiology of ACS**.
 - Cardiac output and venous return are decreased.
 - Reduction in blood flow to the liver, intestines, and kidneys can result in anuria.
 - The two hemidiaphragms push upward, decreasing thoracic
volume and compliance leading to elevated peak airway pressures.

- Central venous, pulmonary capillary wedge, and right atrial pressures increase with intraabdominal pressure (can lead to false pulmonary artery catheter pressures).
- \(PO_2 \) is decreased due to increases in airway pressures and ventilation/perfusion abnormalities that worsen with positive end-expiratory pressure.

<table>
<thead>
<tr>
<th>Abdominal Pressure</th>
<th>Degree of Elevation</th>
<th>Clinical Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–20 mm Hg</td>
<td>Mild</td>
<td>Insignificant</td>
</tr>
<tr>
<td>20–30 mm Hg</td>
<td>Moderate</td>
<td>Oliguria and organ dysfunction</td>
</tr>
<tr>
<td>>30 mm Hg</td>
<td>Severe</td>
<td>Requires immediate attention</td>
</tr>
</tbody>
</table>

Phase 3: Planned Reoperation

- Packs should be left in place until the patient’s hemodynamics are stable and all major sites of hemorrhage have had time to clot. When removed, packs should be taken out slowly with plans for vascular control.
- Reoperation should be scheduled when the probability of achieving definitive organ repair and complete fascial closure are highest, although an estimation that the fascia cannot be closed should not preclude initial reexploration(s).
- Reexploration must occur after correction of hypotension, acidosis, hypothermia, and coagulopathy. It typically occurs 24–48 hours following the initial operation.
- Timing can, however, be dictated by other pressing clinical concerns, such as ACS, limb ischemia, and suboptimal control of spillage at primary operation.
- In cases of a packed and drained duodenum, pancreas, kidney, bladder, or liver injuries with gross bowel contamination, packs should be retrieved within 36–48 hours.
- **This surgery may occur (and in many cases should occur) at the next echelon of care.**
 - STRATEVAC (strategic evacuation) should be weighed carefully because surgery is not available in transit.

Conduct of Relaparotomy

- It is to be presumed that injuries were unrecognized.
- **A complete exploration must be performed.**
- Feeding tube placement, either transabdominal or nasoenteric, should be performed at this time.
- Repacking may be reemployed if other measures fail to control hemorrhage.
- Radiographic images should be obtained that visualize nipples to mid-thigh to ensure that all packs have been removed from the abdomen.
 - Sponge counts are unreliable in this situation.
- **Unplanned reexploration.**
Emergent, unplanned reexploration should be considered in any patient who remains unstable, persistently coagulopathic, or acidotic despite continued resuscitation or evidence of ACS.

Damage Control in the Chest

Thoracic Injuries

- The goal of abbreviated thoracotomy is to stop the bleeding and restore a survivable physiology; contamination is usually not a problem.
- In the exsanguinating patient, nonanatomical wedge resection to rapidly achieve hemostasis and control of air leaks using a large stapler is preferred over formal lung resection.
- In pulmonary tractotomy, the lung bridging the wound tract is opened between long clamps or with a linear stapler allowing direct inspection and selective control of bleeding points and air leaks.
- Great vessel injuries can be temporized with intraluminal shunts or Fogarty balloons to achieve distal control in inaccessible areas.
- Tracheal injury can be temporized with airway control placed through the site of injury.
- Extensive bronchial repairs are not feasible in the patient in extremis; therefore, rapid resection of the affected lobe would be best.
- When dealing with esophageal injury, diversion and wide drainage, not definitive repair, are the best initial courses of action.
- A single layer en masse suture closure of the chest wall should be used.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 13

Face and Neck Injuries

Introduction

Immediate recognition and appropriate management of airway compromise is critical to survival. The best method to quickly evaluate airway compromise is to ask the patient to speak. If the patients can speak intelligibly, then the airway is intact, they have enough pulmonary reserve to generate sound, and their Glasgow Coma Scale score is most likely >8. If the patient cannot speak, the airway needs to be emergently secured.

- Face and neck injuries can be immediately life-threatening and difficult to manage. **Focus on ABC priorities.**
- During **airway control**, maintain **cervical spine immobilization** in patients with head and neck injuries.
- **Control of bleeding** begins with direct pressure. If bleeding cannot be controlled with direct pressure, immediate operative intervention is necessary. DO NOT blindly clamp vessels in the neck.
- **Complete assessment** of remaining injuries (fractures, lacerations, esophageal injury, ocular injuries, etc) occurs only after the ABCs have been addressed.

Immediate Management of Facial Injuries

- **Airway.**
 - The most common site of airway obstruction in the trauma patient with head and/or neck injuries is at the base of tongue and upper pharynx. These patients typically present with obstructed breathing marked by **stertor**, a coarse snoring noise most pronounced on inspiration. Blunt or penetrating neck injuries may also result in laryngeal trauma that can present with inspiratory **stridor**, a harsh, high-pitched sound. In either case, a noisy airway is a compromised airway, and steps must be taken immediately to relieve the obstruction. Common causes of traumatic airway obstruction include:
 - Blood or secretions.
 - Soft-tissue edema.
 - Collapse of the tongue base against the posterior pharynx.
 - A fractured, free-floating mandible may obstruct the airway due to
tongue base retrodisplacement.
- Displaced tooth fragments may become foreign bodies.
- Maneuvers to relieve upper airway obstruction:
 - Chin lift or jaw-thrust maneuver.
 - Remove foreign bodies (strong suction, Magill forceps).
 - Place adjunctive airway device (nasal trumpet or oropharyngeal airway). DO NOT use nasal tubes in patients with suspected skull base fractures.
 - Endotracheal intubation.
 - Cricothyroidotomy (preferred emergent surgical airway technique) or urgent tracheotomy may become necessary.

- Cervical spine.
 - Up to 10% of patients with significant blunt facial injuries will also have a cervical spine injury.
 - The neck should never be hyperextended.
 - Intubation should only be performed with in-line neck stabilization.

- Vascular injury.
 - Injuries to the face are often accompanied by significant bleeding.
 - Control of facial vascular injuries should progress from simple wound compression for minor bleeding to possible vessel ligation for more significant bleeding.
 - Vessel ligation should only be performed under direct visualization and after careful identification of the bleeding vessel. Blind clamping of bleeding areas should be avoided because critical structures, such as the facial nerve or parotid duct, are susceptible to injury.
 - Wound packing with a pressure dressing may control active craniofacial bleeding. Hemostatic gauze may also be used.
 - Intraoral bleeding must be controlled to ensure a safe airway.
 - Do not pack the oropharynx in an awake patient due to the risk of airway compromise. First secure the airway with an endotracheal tube or surgical airway, if necessary. Moistened, rolled gauze is excellent material for packing the oropharynx.
 - Irrigation and gram-positive antibiotic coverage (eg, clindamycin) should be used liberally for penetrating injuries of the face.
- Evaluation.
Once the casualty is stabilized, gently cleanse dried blood and foreign bodies from wound sites to evaluate the depth and extent of injury.

- The bony orbits, maxilla, forehead, and mandible should be palpated for stepoffs or mobile segments suggestive of a fracture.
- A complete intraoral examination includes inspection and palpation of all mucosal surfaces for lacerations, avulsions, ecchymosis, bony stepoffs, malocclusion, and dental integrity.
- **In the awake patient, malocclusion indicates a probable fracture.**
- Perform a cranial nerve examination to assess vision, gross hearing, facial sensation, facial muscle movement, tongue mobility, and extraocular movements.
- Consult an ophthalmologist for decreased vision on gross visual field testing, diplopia, or decreased ocular mobility.
- If the intercanthal distance measures >40 mm (approximately the width of the patient’s eye), the patient should be evaluated with a CT scan and treated for a possible naso-orbital-ethmoid (NOE) fracture.
 - If an NOE fracture is suspected, do not instrument the nose. There may be a tear in the dura, and instrumentation may contaminate the cerebrospinal fluid (CSF) via the skull base defect.

Facial Bone Fractures

Facial bone fractures should be realigned and fixed in correct anatomical position with dental wires or titanium plates and screws to restore normal appearance and function of the face and surrounding structures.

With the exception of fractures that significantly alter normal dental occlusion or compromise the airway, repair of facial fractures may be delayed for up to 10 days after injury. Open fractures may be debrided, irrigated, and closed temporarily should time not permit immediate repair.

- **Mandible fractures.**
 - Second most commonly fractured bone of the face (after the nose).
 - Subcondylar fractures are most common.
 - Multiple mandible fractures are present in 50% of cases.
 - Patients typically present with limited jaw mobility or malocclusion.
 - Panorex is the single best plain film (but is usually unavailable in the field environment); a plain film mandible series serves as a less reliable, but satisfactory, study (might overlook subcondylar fractures).
 - Fine cut (1–3 mm) CT scan will delineate nearly all mandible fractures.
 - Treatment is determined by the location and severity of the fracture and the condition of existing dentition.
 - Remove only teeth that are severely loose or fractured with exposed pulp.
 - Teeth in the line of a fracture, if stable and not impeding the
occlusion, should be maintained.

- Nondisplaced subcondylar fractures in patients with normal occlusion may be treated simply with a soft diet and limited wear of a Kevlar helmet and protective mask.
- Immediate reduction of the mandible fracture and improvement of occlusion (and patient comfort) can be accomplished with a bridle wire (24 or 25 gauge) placed around at least two teeth on either side of the fracture.
- More severe fractures may require immobilization with maxillary-mandibular fixation (MMF) for 6 weeks.
- Place commercially made arch bars onto the facial aspect of the maxillary and mandibular teeth.
 - Arch bars are fixed to the teeth with simple circumdental (24 or 25 gauge) wires (Fig. 13-1).
 - After proper occlusion is established, the maxillary arch bar is fixed to the mandibular arch bar with wires or elastic bands.
 - If portions of the mandible have been avulsed or the fragments are extremely contaminated, an external, biphase splint should be placed to maintain alignment.
 - **Wire cutters must always be with the patient who is in MMF.**

![Fig. 13-1. Arch bar applications.](image)

- The airway must be closely monitored in the patient with maxillofacial trauma who is placed into MMF. **Consider the ability to monitor patients with MMF during aeromedical evacuation before placing a patient in MMF.**
- Open reduction and internal fixation with a mandible plate across fracture sites may obviate the need for MMF.
- **Nasal fractures.**
• Most common fracture.
 ♦ Control of epistaxis: Gauze or sponge packing or balloon. Hemostatic gauze may also be helpful for brisk epistaxis (Fig. 13-2).
 ♦ Diagnosed clinically by the appearance and mobility of the nasal bones.

 The patient’s septum should be evaluated for the presence of a septal hematoma that, if present, must be immediately drained by incision, followed by packing to prevent delayed complications.

• Treat by closed reduction of the fractured bones and/or septum into their correct anatomical positions up to 7 days after fracture.
 ♦ Place a blunt elevator (Sayre) into the nasal cavity to elevate the depressed bony segment while simultaneously repositioning the bone with the surgeon’s thumb placed externally.
 ♦ The nose may then be fixed with tape or a splint to maintain the reduction.

- Maxillofacial fractures.
 • Includes orbital, zygomaticomaxillary complex, frontal bone, and Le Fort fractures.
 • Potentially life-threatening due to loss of airway, hemorrhage, or spinal injury.
 • Fragment wounds of the maxillary sinus are commonly seen and may require surgical removal of retained fragments (can delay until specialist available). **Fig. 13-2.** (a) Anterior and (b) posterior packing of

• Midface fractures (Le Fort).
 ♦ Requires “significant” trauma.
 ♦ High incidence of associated spine, brain, and orbital injuries.
 ♦ Significant hemorrhage from lacerations of the internal maxillary artery and its branches.
 ◦ Can be difficult to control.
May be life-threatening.

Treat by protecting the airway, controlling hemorrhage with pressure dressings or packing, and reducing fractures.

A surgical airway is sometimes necessary. Edema may cause immediate or delayed airway compromise.

Can be difficult to diagnose.

Manipulate the hard palate and midface while stabilizing the skull. Place the thumb and forefinger of one hand on the nasal bridge to stabilize and, with the other hand, determine mobility of the maxilla by placing the thumb on the alveolus and forefinger on the palate and attempt gentle distraction in an anterior-posterior direction.

Penetrating facial injury fractures may not follow classic Le Fort patterns and often have significant associated external and internal soft-tissue injuries.

Systematically palpate the head and face looking for deformities, crepitus, tenderness, ecchymosis, or subconjunctival hemorrhages that might suggest fractures.

Classification of facial fractures by Le Fort (Fig. 13-3).

I—Fracture separates the entire alveolar process from maxilla.

II—Separation of midface, including the nasal bone, from the orbit (pyramidal).

III—Detachment of the face from the skull (craniofacial disarticulation).

Treatment.

ABCs.

If nasal intubation is necessary, extremely careful placement is mandatory to avoid cribiform plate or anterior cranial fossa penetration.
Fig. 13-3. Le Fort facial fracture classifications.

- Check CNS and vision.
- Can immobilize the maxilla by using the mandible as a splint (wires/arch bars, with wire cutters at bedside). It is much easier to place patient into MMF if either a nasal airway or tracheostomy is used.
- Control nasopharyngeal and/or oropharyngeal hemorrhage by tamponade as previously described.
- Definitive surgical repair.
 - Not an emergency once the airway and hemorrhage are controlled.
 - Requires expertise in ENT, oral and maxillofacial surgery, plastic surgery, and/or ophthalmology.
 - Repair is often time-consuming.
- Open fracture reductions require titanium plating systems and equipment that are usually unavailable in the field.

Soft-Tissue Injuries

- **General principles.**
 - Avoid injury to surrounding structures, such as the facial nerve or parotid duct.
 - Wounds should be gently cleansed with saline and light scrub solutions; foreign bodies should be meticulously cleaned from wounds prior to closure. Profuse irrigation is indicated.
 - Sharply debride devascularized wound edges minimally.
 - Facial lacerations should be closed in layers within 24 hours of injury unless severely contaminated. Heavily contaminated wounds and large avulsion injuries may be treated with packing, regular debridement, local wound care, and closed in a delayed fashion. The use of local flaps, skin grafts, or free vascularized tissue transfers may be necessary to cover large, soft-tissue defects of the face and neck.
Use 4-0 or 5-0 absorbable suture for subcutaneous/dermal layers.
Use 5-0 or 6-0 nonabsorbable sutures on facial skin.
Remove sutures in 5–7 days.

- **Facial nerve injuries.**

 Facial nerve branches that are lacerated at a site anterior to a vertical line drawn down from the lateral canthus of the eye do not need to be surgically reapproximated because these branches are very small and will spontaneously regenerate with good return of facial function.

 - Carefully examine for facial nerve function in all **five** branches as soon as possible after injury (Fig. 13-4).

 Fig. 13-4. Branches of the facial nerve

 - The severed ends of the nerve may be located in the wound with a nerve stimulator for up to 3 days after injury.
 - Cut nerve ends should be primarily reapproximated with three or four fine (9-0) nylon sutures placed through the epineurium.
 - If a gap exists between the severed ends of the facial nerve due to tissue loss, an interposition graft may be placed using a section of the great auricular nerve to bridge the gap.
 - In heavily contaminated wounds that cannot be closed primarily, the severed ends of the nerve should be located and tagged for identification and repair at a later time.

- **Parotid duct injuries.**

 - Evaluate penetrating wounds of the parotid/buccal regions of the face for salivary leakage due to a lacerated parotid duct (Fig. 13-5).

 - The wound may be manually compressed and inspected for salivary leakage.

 - If the parotid duct is injured by a facial laceration, the distal end of the duct may be identified by placing a lacrimal probe through the intraoral opening of the duct located near the maxillary second molar (see Fig. 13-4).

 - The proximal end may be identified by compressing the wound and looking for saliva.
• Repair with absorbable (6-0) sutures (see Fig. 13-5).
• A stent may be placed into the duct to facilitate closure and prevent stenosis. Fig. 13-5. Repair of the parotid duct.

♦ Possible stents include lacrimal stents, large (size 0) polypropylene sutures, or long angiocaths.
♦ Stents may be sutured to the buccal mucosa and removed after 7 days.

• Auricular injuries.
 ♦ Strongly consider antibiotic coverage for *Pseudomonas* and *Staphylococcus* infections with exposed cartilage (especially in burns of the auricle).
 ♦ Preserve skin and soft tissue for maximal coverage of exposed cartilage.
 ♦ Cartilage should be preserved unless severely damaged. **Minimize use of suture in cartilage or perichondrium.**
 ♦ Auricular hematomas should be incised and drained to prevent cartilage destruction. A drain or bolster should be placed for 48 hours after incision and drainage.

Penetrating Neck Trauma

• Introduction.
 ♦ Vascular injuries occur in 20% and aerodigestive tract injuries in 10% of cases.
 ♦ Immediate mortality is primarily due to exsanguination or airway compromise.
 ♦ Esophageal injury, which may result in mediastinitis and intractable sepsis, is a significant cause of delayed morbidity and mortality.

• Anatomy.

The neck is divided into three zones to aid decision-making for diagnostic tests and surgical strategy. In each zone, the primary structures at risk of injury are different (Fig. 13-6).

♦ **Zone I (clavicle to cricoid):** The structures of concern include large vessels of the thoracic outlet (subclavian artery and vein, common carotid artery),
the lung, and the brachial plexus.

- **Zone II (cricoid to angle of mandible):** Structures of concern include the common carotid artery, internal jugular vein, esophagus, and trachea.
- **Zone III (angle of mandible to base of skull):** The structure of primary concern is the internal carotid artery.

![Zones of the neck](image)

Fig. 13-6. Zones of the neck.

- **Immediate management.**
 - ABCs.
 - Obtain chest, soft-tissue neck radiographs, and CT angiography if patient is stable.
 - Address tetanus status and antibiotic prophylaxis.

- **Operative strategy.**
 - Neck wounds with suspected platysma violation should only be probed or explored in the operating room. An approach via an incision along the anterior border of the sternocleidomastoid muscle is preferred (Fig. 13-7).
 - If the platysma is not violated, surgical intervention is not indicated.
 - If the patient with penetrating neck trauma (PNT) is symptomatic, neck exploration is indicated. If the patient is asymptomatic, workup to include CT angiography, panendoscopy (direct laryngoscopy, bronchoscopy, and esophagoscopy), and a water-soluble contrast swallow study should be considered. Neck exploration is indicated if the workup reveals pathology.
 - Selective management based on clinical signs and symptoms should be considered for all patients with PNT, regardless of the zones involved. Nonoperative management of zone II injuries with platysma violation is acceptable in the stable patient with a negative workup as described previously. Selective management of PNT can only be performed at facilities with the resources to complete the workup and observe the patient. Surgical exposure of zones I and III is difficult and requires a high degree of surgical expertise. Nonoperative
management of PNT in stable patients with zone I or zone III injuries is preferred.

Fig. 13-7. Neck exposure of zone II.

- PNT patients without clinical signs of injury (see below) may be evacuated without operative intervention if the appropriate workup (CTA, panendoscopy, or swallow study) is negative.

- Important clinical signs indicating probable injuries (pertinent to all three zones).
 - Signs of vascular injury:
 - Current or history of significant bleeding.
 - Expanding hematoma.
 - Bruit or thrill in the neck.
 - Hypotension.
 - Dyspnea, hoarseness, or stridor.
 - Absent or decreased pulses in neck or arm.
 - Focal neurological deficit or mental status change.
 - Chest radiograph findings of hemothorax or mediastinal widening.
 - Signs of aerodigestive injury (esophagus, trachea, larynx):
 - Crepitus or subcutaneous emphysema.
 - Dyspnea or stridor.
 - Air bubbling from wound.
 - Tenderness or pain over trachea; odynophagia.
 - Hoarse or abnormal voice.
Hematemesis or hemoptysis.

Surgical Principles

- The groin and upper thigh should be surgically prepped for possible greater saphenous vein interposition graft or patch angioplasty.
- Exsanguinating hemorrhage from injured vessels at the base of the skull (zone III) may be controlled with inflation of a directed catheter (Fogarty or Foley).
- Repair esophageal injuries in two layers and place passive Penrose drains. A muscle flap should be interposed between repaired esophageal and tracheal injuries to prevent a fistula. Obtain a contrast swallow study 7 days after repair and before feeding.
- Repair laryngotracheal injuries with either absorbable or nonabsorbable suture, stainless steel wires, or microplates. It is important to search for concomitant esophageal injuries as well.
- Major (significant segmental loss or >50% diameter loss) tracheal injuries should be managed with an endotracheal tube placed through the distal tracheal opening and placement of passive drains.

Vertebral artery injury.

- Suspect if bleeding continues from a posterolateral neck wound despite pressure on the carotid artery.
- Preoperative angiography localizes the site of injury and establishes the existence of a patent contralateral vertebral artery.
- Exposure of the vertebral artery may be difficult. When the contralateral vertebral artery is intact, ligation proximal and distal to the injury will likely be necessary.
- Bone wax or surgical clips may be useful for controlling vertebral artery bleeding. May require removing the lateral aspect of the transverse process for access.

Intraoral injuries.

- Occult internal carotid artery injury should be suspected in patients with penetrating intraoral injuries Lateral to the tonsillar fossa. Neurological testing and monitoring are critical, and a CT scan and/or angiography should be considered. A “sentinel” bleed should be considered if, after a penetrating lateral oral injury, the patient bleeds a small amount only to stop. A carotid artery blowout or occlusion may follow. Carotid artery intimal dissection may occur in patients with blunt lateral oropharyngeal trauma or in patients with high-velocity penetrating injury near the skull base that does not directly violate the carotid artery.

Internal carotid artery injury.

- Should be surgically repaired unless there is profound hemiplegia with coma (Glasgow Coma Scale score <8), in which case the common or internal carotid arteries may be ligated. The external carotid artery and its branches may always be ligated.
- Mortality is high in patients with severe neurological deficits; carotid ligation is justifiable in complete occlusion of the entire carotid system and depending on the triage situation.
- Small carotid perforations should be minimally debrided and closed with 6-0 polypropylene.
- Vein angioplasty is required with loss of vascular tissue.
- If there is extensive destruction, segmental resection and restitution of flow are established by:
 - End-to-end anastomosis (if the vessel is sufficiently elastic to permit).
 - Interposition vein graft.
 - External carotid swing-over and interposition.
 - Temporary (24–48 hours) shunt as part of a damage control maneuver.
- A distal clot may be removed by gentle use of a balloon catheter prior to shunt insertion or repair.

- **Internal jugular vein injury.**
 - Preferably repaired with suture.
 - Ligation is acceptable if the contralateral internal jugular is patent.

- **Larynx.**
 - After immediate control of the airway has been achieved by intubation or tracheotomy (not through the wound in the larynx!), a complete airway evaluation by direct laryngoscopy and bronchoscopy must be performed.
 - Debridement of laryngotracheal injuries must be careful and conservative. A fragmented larynx or trachea should be reapproximated and sutured with extraluminal sutures for tracheal injuries and nonabsorbable sutures or microplates used for laryngeal fractures. All exposed laryngeal cartilage should be covered with mucosa. A buccal mucosa graft may be used when large intraluminal mucosal defects are present.
 - Management of laryngeal trauma includes accurate reduction and stabilization of fractures; mucosa-to-mucosa closure of lacerations; and use of a soft stent if there is extensive cartilaginous damage, structural support is decreased, or the anterior commissure is involved. The stent may need to be temporarily placed for 4–6 weeks to maintain correct anatomical architecture and requires a complementary tracheotomy.
 - Excessive removal of cartilage and mucosa must be avoided to prevent tracheal or laryngeal stenosis.

- **Laryngotracheal injuries.**
 - If laryngotracheal separation is suspected (massive crepitus over the
larynx/trachea) in an otherwise “stable” airway, endotracheal intubation should not be undertaken because this may cause a partial separation to become a complete separation, and/or the endotracheal tube may enter the mediastinum and occlude the distal airway.

- Awake tracheotomy/cricothyroidotomy under local anesthesia without paralysis is preferable in patients with laryngeal trauma. Adequate local anesthesia can be achieved with a 4% (40 mg/cc) lidocaine nebulizer, 2 cc in 3 cc of saline, and direct administration of 4% lidocaine into the trachea for an awake tracheotomy (in addition to local anesthetic infiltration into the skin and subcutaneous tissues). When instilling anesthesia into the airway, aspirate and ensure that air enters the syringe before injecting.

Tracheal injury and reconstruction.

- A tracheostomy tube may be placed through small anterior wounds of the cervical trachea.
- Repair simple lacerations with absorbable suture. Care should be taken to avoid constricting the airway when closing defects. Pedicled muscle may be used to cover small tracheal defects.
- End-to-end tracheal anastomosis should be performed with interrupted, extraluminal 4-0 nylon or polypropylene suture.
- The anterior cricoid ring does not need to be closed, and careless reapproximation of a fractured cricoid may result in subglottic stenosis.
- Up to 5 cm of trachea can be resected with proximal and distal mobilization.
- Mobilize anteriorly and posteriorly to preserve lateral blood supply. A suprathyroid release may be helpful.
- Remove an oral endotracheal tube as soon as possible post-op.
- Consider chin-to-chest sutures (2-0 nylon sutures through mandibular periosteum and clavicular periosteum) for 10 days postoperatively to avoid accidental wound separation with head extension in patients with tracheal separation repairs.

Esophageal and hypopharyngeal injury and repair.

- Commonly associated with injuries to the airway and great vessels.
- Subcutaneous emphysema, pneumomediastinum, saliva in the neck, hemoptysis or blood-tinged saliva, odynophagia, and dysphagia are possible signs and symptoms of hypopharyngeal and esophageal injury. However, 25% of these injuries may be asymptomatic.
- Missed injury is a major source of late morbidity/mortality.
- Chest radiograph and esophagogram with water-soluble contrast are indicated in patients with suspected hypopharyngeal or esophageal injuries, but without a definitive indication for exploration. Esophagograms may have a false-negative rate as high as 20%. A negative water-soluble contrast study may be followed by a barium
study to increase the test sensitivity.
- Insufflation with air in an open neck flooded with saline may aid in identification during exploration.
- Rigid and flexible esophagoscopy are complementary in the identification of hypopharyngeal and esophageal injuries.
- Debride devitalized tissue.
- Close esophageal wounds in two layers with absorbable sutures.
- Pedicled muscle flaps help to bolster repairs.
- Drain wounds with Penrose drains.
- Contrast swallow study at 7 days post-op and prior to oral intake.
- Leave drains in place until swallow study performed and oral diet resumed.
- Extensive injuries may require lateral cervical esophagostomy and is preferred to closure under tension.

- **Combined injuries.**
 - Esophageal injuries combined with airway or vascular injury require separation with healthy tissue. Strap muscles are ideal, but the use of a pedicled sternocleidomastoid muscle is an alternative if the strap muscles are devitalized.

- **Esophageal fistula.**
 - 10%–30% incidence.
 - Due to inadequate debridement, devascularization of remaining esophageal wall, closure under tension, or infection.
 - Treatment.
 - ♦ NPO.
 - ♦ Maintain nutrition with tube feeds.
 - ♦ Ensure fistula control with drains.
 - ♦ Weekly water-soluble contrast study to assess closure.
 - ♦ Resume oral intake prior to removing drains.

Skull Base, Temporal Bone, and Otological Injury
- All patients with suspected temporal bone fractures or acoustic barotrauma, with or without tympanic membrane perforation, should undergo audiometric testing (with an audiometer) as soon as feasible. In addition, these patients deserve special consideration because of the high incidence of other neurological and cognitive problems that may occur with these injuries.
- Documentation of facial nerve function is performed on all awake patients and as early as possible in a patient who has regained consciousness. Delineation between delayed versus sudden onset facial paralysis is critical for determining the prognosis and management of facial nerve injuries. Also critical is the delineation between a distal and proximal nerve injury. If a proximal injury is present, one or more facial nerve branches may be
affected.
- Be as complete as possible in describing facial motion, even if not technically accurate. Accurate documentation may spare the patient from unwarranted surgical intervention to explore the entire length of the facial nerve. It is desirable to accurately describe the motion of EACH branch of the facial nerve. An injury of the main trunk will most likely result in all branches being equally affected. Eyelid movement does not ensure that the facial nerve is intact, since the levator palpebrae muscle is innervated by the oculomotor nerve and will remain intact despite facial nerve injury.
- In the absence of medical contraindications, systemic steroids should be administered for suspected facial nerve paralysis. Crush injuries to the facial nerve may present with delayed-onset paralysis, and the severity and course of the paresis may be improved with systemic administration of steroids.

- Skull base fractures are often occult. Assess the patient for evidence of basilar skull fractures (Battle’s sign, raccoon eyes, CSF rhinorrhea or otorrhea). Any patient with blood or CSF in the ear canal should be presumed to have a temporal bone fracture.
- Carefully examine the external auditory canal, but do not instrument the canal if there is CSF or blood in the canal. If a temporal bone fracture is present and the dura is not intact, instrumentation may introduce bacteria into the CSF with resulting meningitis. Sterile instruments may be used to suction and debride the ear canal with microscopic visualization.
- A tear in the lining of the external auditory canal suggests a temporal bone fracture.
 - When a temporal bone fracture is suspected, facial nerve function and hearing must be assessed.
- Dry tympanic membrane perforations can be observed. The vast majority of them will heal spontaneously, but the patient should be followed for potential complications or failure to heal. Wet or contaminated tympanic membrane perforations should be treated with ototopical antibiotics for at least 10 days (4 drops twice daily of ofloxacin are adequate). The patient should be instructed to keep the ears dry (avoid water contamination).
- Hemotympanum may be seen with acoustic and temporal bone trauma. These patients will have hearing loss. If available, perform a gross audiological evaluation with tuning forks. Hemotympanum-associated hearing loss should resolve itself in about 6–8 weeks.
 - Examination of hearing can be accomplished with a single 512-Hz tuning fork.
 - The handle of a vibrating tuning fork is placed on the mastoid tip and then alternately the tuning fork is held in the air outside the external canal while asking the patient which is heard louder (Rinne test). Documentation as A > B (air > bone) or B > A is
sufficient (do not report as “positive” or “negative”):

◊ Air conduction greater than bone conduction with a 512-Hz tuning fork is normal.

◊ Bone conduction greater than air is suggestive of a conductive hearing loss in the affected ear.

♦ Place the 512-Hz tuning fork on the frontal bone/nasal dorsum or central incisors (Weber test).

◊ The sound will be heard loudest in the ear with a conductive hearing loss or in the ear contralateral to an ear with sensorineural hearing loss.

◊ If the Rinne test suggests a conductive hearing loss (ie, bone conduction > air conduction), the tuning fork should be heard louder on the side with the conductive loss.

• Any otological blast injury or injury to the temporal bone may result in tinnitus. Management is expectant because tinnitus following acoustic trauma usually resolves spontaneously. Hearing should be evaluated and documented.

• Any patient with acoustic trauma should be removed from noisy environments and have serial audiograms performed over 14–21 days to assess recovery. Recovery of most traumatic hearing loss is expected, except in cases of temporal bone fractures, very large tympanic membrane perforations, or penetrating temporal bone injuries.

• Steroids should be considered if sensorineural hearing loss is suspected and documented after a blast injury or acoustic trauma. A dose of 1 mg/kg of prednisone is appropriate. If there is no improvement after 5 days of therapy, steroids may be discontinued. If improvement is noted, a taper over 3–4 weeks is indicated. Be mindful that steroids may alter a patient’s affect, impair judgment, or impair wound healing.

• Dizziness and vertigo may result from acoustic trauma. If true vertigo (observed nystagmus) exists after an otological injury, the patient may have a perilymphatic fistula from depression of the stapes into the oval window or rupture of the round window. These patients may also have tinnitus and hearing loss. If a perilymphatic fistula is suspected, the patient should be seen by an otolaryngologist as soon as possible to prevent further damage to the inner ear.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 14

Ocular Injuries

Introduction
The preservation of the eyes and eyesight of service personnel is an extremely important goal. Despite comprising as little as 0.1% of the total body surface area, injuries to the eye have been sustained in 6% of all combat casualties in Operation Iraqi Freedom/Operation Enduring Freedom. In the Vietnam War, almost 50% of casualties with penetrating eye wounds eventually lost vision in the injured eye. Improvements in ophthalmic care in the last 30 years offer hope that blindness in combat casualties will be increasingly less common in future wars.

Triage of Patients With Eye Injuries

- Advanced Trauma Life Support protocols: After primary survey is complete and the patient is stable, identify and treat ocular injuries in the secondary survey.
- Casualties with mild eye injuries may be treated and returned to duty.
- Casualties with more severe injuries should be evacuated to save vision.
- Distinguishing major ocular injuries from minor ones may be difficult.
- At Role 1/2, due to time and equipment restraints, medical personnel will likely “shield and evacuate.” If an open globe is suspected, cover the eye with a shield made with a device that applies forces to the bony orbit area instead of to the eye.

Identifying Severe Eye Injuries

- Associated injuries.
 - Fragmentation wounds of the face—think intraocular foreign body.
 - Lid laceration—open the eyelids and check for underlying globe laceration.
- Vision.
 - Use book print, medication labels, finger counting, etc, to evaluate vision.
 - Compare sight in the injured eye to the uninjured eye.
 - Severe vision loss is a strong indicator of serious injury.
- Eyeball structure.
 - Obvious corneal or scleral lacerations.
 - Subconjunctival hemorrhage (SCH)—may overlay an open globe.
 - Dark uveal tissue presenting on the surface of the eye indicates an open globe.
Foreign body—did it penetrate the eye?
- Blood in the anterior chamber (hyphema) indicates severe blunt trauma or penetrating trauma.

- Proptosis—may indicate a retrobulbar hemorrhage, which is an ocular emergency.
- Pupils.
 - Pupillary distortion—may be associated with an open globe.
- Motility.
 - Decreased motility on one side may be caused by an open globe.
 - Other causes include muscle injury, orbital fracture, and orbital hemorrhage.

Open Globe
- May result from penetrating or blunt eye trauma.
- May cause loss of vision from either disruption of ocular structures or secondary infection (endophthalmitis).
- Biplanar radiographs or a CT scan of the head may help to identify a metallic intraocular fragment in a casualty with severe vision loss, a traumatic hyphema, a large SCH, or other signs suspicious for an open globe with an intraocular foreign body. Fine orbit cuts at every 1 mm are required to properly view the globe. Routine head 4-mm CT cuts may miss a high number of globe metallic foreign bodies or injuries.

Immediate Treatment of an Open Globe
- Tape a rigid eye shield (NOT a pressure patch) over the eye.
- Do not apply pressure on or manipulate the eye, including ultrasound.
- Apply shield to opposite eye to limit motion of injured eye.
- Do not apply any topical medications.
- Start quinolone antibiotic PO or IV (eg, Levoquine 500 mg qd).
- Schedule an urgent (within 24–48 hours) referral to an ophthalmologist with surgical capabilities.
- Administer tetanus toxoid if indicated.
- Prevent emesis (Phenergan 50 mg or Compazine 10 mg IM/IV).

Treatment of Other Anterior Segment Injuries

Subconjunctival Hemorrhage
- Small SCHs may occur spontaneously or in association with blunt trauma. These lesions require no treatment.
- SCHs may also occur in association with a rupture of the underlying sclera.
- Warning signs for an open globe include a large SCH with chemosis (conjunctiva bulging away from the globe) in the setting of blunt trauma, or any SCH in the setting of penetrating injury. Casualties with blast injury and normal vision do not require special care.
- Suspected open globe patients should be treated as described previously.

Treatment of Chemical Injuries of the Cornea
- Nonsterile water may be used if it is the only liquid available.
- Use topical anesthesia before irrigating, if available (tetracaine or proparacaine ophthalmic).
- Measure the pH of tears to ensure that, if there is either acid or alkali in the eye, the irrigation continues until the pH returns to normal. Do not use alkaline solutions to neutralize acidity or vice versa.
- Remove any retained particles.
- Using the fluorescein test, look for epithelial defect (ie, corneal abrasions):
 - If none, then mild chemical injuries or foreign bodies may be treated with artificial tears.
 - If an epithelial defect is present, use a broad-spectrum antibiotic ophthalmic ointment (Polysporin, erythromycin, or Bacitracin) 4 times per day.
- Noncaustic chemical injuries usually resolve without sequelae.
- More severe chemical injuries require ophthalmological evaluation.
- Monitor (daily topical fluorescein evaluation) for a corneal ulcer until epithelial healing is complete.
- Severe acid or alkali injuries of the eye (recognized by pronounced chemosis, limbal blanching, and/or corneal opacification) can lead to infection of the cornea, glaucoma, and possible loss of the eye. Refer to an ophthalmologist within 24–48 hours.
- Treat mustard eye injuries with ophthalmic ointments, such as 5% boric acid ointment, to provide lubrication and minimal antibacterial effects. Apply sterile petrolatum jelly between the eyelids to provide additional lubrication and prevent sealing of the eyelids.
- Treat nerve agent ocular symptoms with 1% atropine sulfate ophthalmic ointment; repeat as needed at intervals of several hours for 1–3 days.

Corneal Abrasions

- **Diagnosis.**
 - Be alert for the possibility of an associated open globe.
 - The eye is usually very symptomatic, with pain, tearing, and photophobia.
 - Vision may be diminished from the abrasion itself or from the profuse tearing.
 - Diagnose with topical fluorescein and cobalt blue light (Wood’s lamp).
 - A topical anesthetic as above may be used for diagnosis, but should NOT be used as an ongoing analgesic agent—this delays healing and may cause other complications.
- **Treatment.**
 - Apply broad-spectrum antibiotic ointment (Polysporin, erythromycin, or Bacitracin) qid.
 - Options for pain relief.
 - Diclofenac: 0.1% drops qid.
Larger abrasions may require a mild cycloplegic agent (1% Mydriacyl or Cyclogyl).

More severe discomfort can be treated with 0.25% Scopolamine 1 drop bid, but this will result in pupil dilation and blurred vision for 5–6 days.

- Small abrasions usually heal well.
- If the eye is not shielded:
 - Antibiotic drops (fluoroquinolone or aminoglycoside) may be used qid in lieu of ointment.
 - Sunglasses are helpful in reducing photophobia.

Casualties who wear contact lenses should have the lens removed and not be reinserted until symptom-free and normal eye exam.

Abrasions will normally heal in 1–4 days.

Initial treatment of thermal burns of the cornea is similar to that for corneal abrasions.

All corneal abrasions need to be checked once a day until healing is complete to ensure that the abrasion has not been complicated by secondary infection (corneal ulcer, bacterial keratitis).

Corneal Ulcer and Bacterial Keratitis

- **Diagnosis.**
 - Corneal ulcer and bacterial keratitis are serious conditions that may cause loss of vision or even loss of the eye!
 - A history of corneal abrasion or contact lens wear.
 - Increasing pain and redness.
 - Decreasing vision.
 - Persistent or increasing epithelial defect (positive fluorescein test).
 - White or gray spot on the cornea seen on examination with a penlight or direct ophthalmoscope.

- **Treatment.**
 - Quinolone drops (eg, Ocuflox), 1 drop every 5 minutes for 5 doses initially, then 1 drop every 30 minutes for 6 hours, and then 1 drop hourly around the clock thereafter.
 - Scopolamine 0.25%, 1 drop bid, may help relieve discomfort caused by ciliary spasm.
 - Patching and use of topical anesthetics for pain control are contraindicated (see pain control measures discussed previously).
 - Expedited referral to an ophthalmologist within 3–5 days, sooner if ocular injury is deteriorating. Infection may worsen, leading to permanent injury.

Conjunctival and Corneal Foreign Bodies

- **Diagnosis.**
Abrupt onset of discomfort and/or history of suspected foreign body.
- If an open globe is suspected, treat as discussed previously.
- Definitive diagnosis requires visualization of the offending object, which may sometimes be quite difficult.
 - A hand-held magnifying lens or pair of reading glasses will provide magnification to aid in the visualization of the foreign body.
 - Stain the eye with fluorescein to check for a corneal abrasion.
- The casualty may be able to help with localization if asked to indicate the perceived location of the foreign body prior to instillation of topical anesthesia.
- Eyelid eversion with a cotton-tipped applicator helps the examiner identify foreign bodies located on the upper tarsal plate.

Treatment

- Superficial conjunctival or corneal foreign bodies may be irrigated away or removed with a moistened sterile swab under topical anesthesia.
- Objects adherent to the cornea may be removed with a swab or a sterile 22-gauge hypodermic needle mounted on a tuberculin syringe (hold the needle tangential to the eye).
- If no foreign body is visualized, but the index of suspicion is high, vigorous irrigation with artificial tears or sweeps of the conjunctival fornices with a moistened cotton-tipped applicator after topical anesthesia may be successful in removing the foreign body.
- If an epithelial defect is present after removal of the foreign body, treat as discussed previously for a corneal abrasion.

Hyphema: Blood in the Anterior Chamber

- Treatment (to prevent vision loss from increased intraocular pressure):
 - Be alert for a possible open globe and treat for that condition if suspected.
 - Avoidance of rebleeds is a major goal of management.
 - **Avoid** aspirin or nonsteroidal antiinflammatory drugs.
 - No strenuous activity (bedrest with head of bed elevated) for 7 days.
 - No reading for 7 days to minimize rapid eye movements.
 - Prednisolone 1%—1 drop 4 times a day.
 - Scopolamine 0.25%—1 drop twice a day.
 - Cover eye with protective shield.
 - Elevate head of bed to promote settling of red blood cells in anterior chamber.
 - Provide a 24- to 48-hour referral to an ophthalmologist to monitor for
increased intraocular pressure (which may cause permanent injury to the optic nerve) and to evaluate for an associated open globe.

- If evaluation by an ophthalmologist is delayed (>24 hours), treat with a topical beta-blocker (Timolol or Levobunolol) bid to help prevent intraocular pressure elevation.
- If intraocular pressure is found to be markedly elevated (above 30 mm Hg) with a tonopen or other portable tonometry device, other options for lowering intraocular pressure include acetazolamide 500 mg PO or IV and mannitol 1–2 g/kg IV over 45 minutes.

Retrobulbar (Orbital) Hemorrhage

- Keys to recognition: Severe eye pain, proptosis, vision loss, and decreased eye movement.
 - Marked lid edema may make the proptosis difficult to appreciate. Inability to open the lids, even with cotton swabs, is highly suspicious for this.
 - Failure to recognize may result in blindness from increased ocular pressure.
- Perform an immediate lateral canthotomy and cantholysis.
- Provide an urgent referral to an ophthalmologist, within 24–48 hours.
- If evaluation by an ophthalmologist is delayed (>24 hours), treat with a topical beta-blocker (Timolol) bid to help lower intraocular pressure elevation.
- If intraocular pressure is found to be elevated (>30 mm Hg), treat as discussed previously.

Lateral Canthotomy/Cantholysis

The indication for lateral canthotomy/cantholysis is orbital compartment syndrome. Do not perform such procedures if the eyeball structure has been violated. If there is a penetrating globe injury, apply a Fox shield for protection and seek immediate ophthalmic surgical support.

- Inject 2% lidocaine with 1:100,000 epinephrine into the lateral canthus (Fig. 14-1a).
- Crush the lateral canthus with a straight hemostat, advancing the jaws to the lateral fornix (Fig. 14-1b).
- Using straight scissors, make a 1-cm-long horizontal incision of the lateral canthal tendon, in the middle of the crush mark (Fig. 14-1c).
- Grasp the lower eyelid with large toothed forceps, pulling the eyelid away from the face. This pulls the inferior crus (band of the lateral canthal tendon) tight so it can be easily cut loose from the orbital rim (Fig. 14-1d). It will have a “banjo string” feel against the tip of the scissors.
 - Use blunt-tipped scissors to cut the inferior crus.
 - Keep the scissors parallel (flat) to the face with the tips pointing toward the chin.
Place the inner blade just anterior to the conjunctiva and the outer blade just deep to the skin. The eyelid should pull freely away from the face, releasing pressure on the globe. (Fig. 14-1e) Cut residual lateral attachments of the lower eyelid if it does not move freely. Do not worry about cutting ½ cm of conjunctiva or skin. The lower eyelid is cut, relieving orbital pressure. If the intact cornea is exposed, apply, hourly, copious erythromycin ophthalmic ointment or ophthalmic lubricant ointment to prevent devastating corneal desiccation and infection. Relief of orbital pressure must be followed by lubricating protection of the cornea and urgent ophthalmic surgical support. Do NOT apply absorbent gauze dressings to the exposed cornea.

Fig. 14-1. Lateral canthotomy and inferior cantholysis are indicated for casualties presenting with serious orbital hemorrhage.

Orbital Floor (Blowout) Fractures

These fractures are usually the result of a blunt injury to the globe or orbital rim, often associated with head and spine injuries. Blowout fractures may be
suspected on the basis of enophthalmos, diplopia, decreased ocular motility, hypoesthesia of the V2 branch of the trigeminal nerve, associated SCH, or hyphema. Immediate treatment includes pseudoephedrine 60 mg q6h and a broad-spectrum antibiotic for 7 days, ice packs, and instructing the casualty not to blow his/her nose. Definitive diagnosis requires CT scan of orbits with axial and coronal views. Indications for repair include severe enophthalmos and diplopia in the primary or reading gaze positions. Not an urgent matter, surgery may be performed 1–2 weeks after the injury.

Lid Lacerations

Treatment Guidelines for Lid Lacerations Not Involving the Lid Margin

- Excellent blood supply—delayed primary closure is not necessary.
- Eyelid function (protecting the globe) is the primary consideration.
- Begin with irrigation, antisepsis (any topical solution), and a check for retained foreign bodies.
- Superficial lacerations of the eyelid, not involving the eyelid margin, may be closed with running or interrupted 6-0 silk or monofilament.
- Horizontal lacerations should include the orbicular muscle and skin in the repair.
- If skin is missing, an advancement flap may be created to fill in the defect. For vertical or stellate lacerations, use traction sutures in the eyelid margin for 7–10 days.
- Antibiotic ointments qid.
- Skin sutures may be removed in 5 days.

Treatment Guidelines for Lid Lacerations Involving the Lid Margin

- Repair of a marginal lower eyelid laceration with <25% tissue loss (Fig. 14-2a).
 - The irregular laceration edges may be freshened by creating a pentagonal wedge; remove as little tissue as possible (Fig. 14-2b).
 - A 4-0 silk or nylon suture is placed in the eyelid margin (through the meibomian gland orifices 2 mm from the wound edges and 2 mm deep) and is tied in a slipknot. Symmetric suture placement is critical to obtain post-op eyelid margin alignment (Fig. 14-2c).
 - The slipknot is loosened, and approximately 2 or 3 absorbable (VICRYL or gut) 5-0 or 6-0 sutures are placed internally to approximate the tarsal plate. The skin and conjunctiva should not be included in this internal closure (Figs. 14-2g and 14-2h). **Fig. 14-2. Lid n**
 - Anterior and posterior marginal sutures (6-0 silk or nylon) are placed in the eyelid margin just in front and behind the previously placed 4-0
suture (Fig. 14-2e).
- The middle and posterior sutures are left long and tied under the anterior suture. Ensure that the wound edges are everted (Fig. 14-2f).
- Skin is closed with 6-0 silk or nylon sutures. The lid is placed on traction for at least 5 days. Skin sutures are removed in 3–5 days, and the marginal sutures are removed in 10–14 days (Figs. 14-2g and 14-2h).

Additional Points in Lid Laceration Repair
- Tissue loss >25% will require a flap or graft. Best managed by eye surgeon.
- If there is orbital fat in the wound or if ptosis is noted in an upper lid laceration, damage to the orbital septum and the levator aponeurosis should be suspected.
- If the eyelid is avulsed, the missing tissue should be retrieved, wrapped in moistened Telfa, and preserved on ice. The tissue should be soaked in a diluted antibiotic solution prior to reattachment. If necrosis is present, minimal debridement should occur to prevent further tissue loss. The avulsed tissue should be secured in the anatomically correct position in the manner described for lid margin repair as described previously.
- Damage to the canalicular system can occur as a result of injuries to the medial aspect of the lid margins. Suspected canalicular injuries should be repaired by an ophthalmologist to prevent subsequent problems with tear drainage. This repair can be delayed for up to 24 hours.

Laser Eye Injuries
- Battlefield lasers may be designed to cause eye injuries or may be part of other weapons or sensor systems.
- **Prevention is the best option!** Wear eye protection designed for the appropriate light wavelengths if there is a known laser threat.
- The type of ocular damage depends on the wavelength of the laser. Retinal injuries are most common.
- The primary symptom of laser injury is loss of vision, which may be preceded by seeing a flash of light. Pain may not be present.
- Immediate treatment of corneal laser burns is similar to that for corneal abrasions.
- Laser retinal burns have no proven immediate treatment, although improvement with corticosteroids has been reported.
- Routine evacuation for evaluation by an ophthalmologist is required.

Enucleation
A general surgeon in a forward unit should not remove a traumatized eye unless the globe is completely disorganized. Enucleation should only be considered if the patient has a very severe injury, no light perception using the brightest light source available, and is not able to be evacuated to a facility with an
ophthalmologist. Sympathetic ophthalmia is a condition that may result in loss of vision in the fellow eye if a severely traumatized, nonseeing eye is not removed; however, it rarely develops prior to 21 days after an injury. Thus, delaying enucleation until the patient is in the care of an ophthalmologist is relatively safe.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 15

Head Injuries

Introduction

The motor exam is one of the most important aspects for determining prognosis and role for surgical intervention in head-injured patients. Those patients who follow commands have the best prognosis; however, a subsequent neurological deterioration may indicate an enlarging intracranial hemorrhage or increased intracranial pressure (ICP) with brainstem compression. Those patients who fail to follow commands, but localize or withdraw to stimuli, may also benefit from neurosurgical intervention. The worst category of patients who demonstrate flexion or extensor posturing less frequently benefit from surgical decompression unless done quickly and appropriately. One such example would be if a large mass lesion, such as an epidural hematoma, can be rapidly evacuated/decompressed.

Any subsequent neurological improvement may indicate salvageability and should prompt reevaluation. In theater, survival of combat-related head-injured patients has been better than expected, compared with traditional civilian literature. This is likely related to the rapid on-site airway and hemorrhage control, with rapid evacuation to in-theater neurosurgeons. Currently, US/coalition military patients presenting with a Glasgow Coma Scale (GCS) score of 3–5 have a 35% survival; those with a GCS of 6–8 have a 90% survival, with aggressive multimodality care. One-year outcomes of casualties sustaining a gunshot wound to the head in Operation Iraqi Freedom and presenting with a GCS of 3–5, who were treated with aggressive operative decompression and advanced critical care, have been significantly better than reported in civilian literature. Of survivors in this group, 55% of these patients had a 1-year Glasgow Outcomes Score (GOS) of >4. (The GOS is a functional outcomes score ranging from 1 to 5, with 1 being dead; a GOS of 4 is independent, but disabled.) A motor examination of the most salvageable severely brain-injured patients will demonstrate localization to central stimulation. Immediate intubation with adequate ventilation (PaCO\textsubscript{2} of 35) and oxygenation and restoration of intravascular volume are the most critical first-line treatment for a severely head-injured patient. Evacuating to the nearest neurosurgeon, avoiding diagnostic delays, and initiating cerebral resuscitation allow the best chance for ultimate functional recovery. A properly trained surgeon at Role 2 may, at times, find it necessary to surgically intervene should the situation dictate. However, the
neurotrauma patient’s care should be ideally centralized in the theater of operations, where a neurosurgeon, CT scanner, and fixed air transport are established.

Neurosurgical damage control includes early intracranial pressure control (which may include surgical decompression); cerebral blood flow preservation; and prevention of secondary cerebral injury from hypoxia, hypotension, and hyperthemia.

Combat Head Injury Types
- Blunt (closed-head injury).
- Penetrating.
 - Penetrating from fragments.
 - Penetrating from a gunshot wound.
 - Guttering (grooving the skull).
- Primary blast (overpressure central nervous system injuries).
 - A direct injury to the brain or via a force transmitted by the great vessels of the chest to the brain; associated with unconsciousness, confusion, headache, tinnitus, dizziness, tremors, increased startle response, and occasionally (in the most severe forms) increased ICP. Bleeding may occur from multiple orifices, including the ears, nose, and mouth. Alternatively, a blast-injured patient may have no external signs of injury and only subtle signs of cognitive dysfunction in attention, concentration, reaction time, and balance.

A combination of multiple injury types is typically involved in combat-related brain injuries. Those injuries generally involve the face, neck, and orbit; entry wounds may be through the upper neck, face, orbit, or temple (Fig. 15-1).
The subocciput, occiput, and retroauricular regions are often overlooked. Injuries to these areas can indicate underlying injury to the posterior fossa, major venous sinus, and vertebral or carotid artery, as fragments pass through the skull base. Reconstructing the fragment path based on a combination of plain films and CT scan can be challenging, but may be beneficial in triage. In transorbital, lateral temporal, or penetrating injuries that cross the midline, an underlying injury to intracranial vessels should be suspected with associated pseudoaneurysms, dissections, or venous sinus injury.

Explosion results in penetrating fragment injury, as well as blunt injury to the brain. Depending on proximity to the explosion, a blast overpressure phenomenon may also result. In a severely brain-injured patient, more deficits than indicated by the CT scan may be due to underlying injury to brachiocephalic vessels, shear injury, or the late effects of blast overpressure, with resulting delayed cerebral vasospasm. Plain films, more useful in penetrating than in blunt trauma, may reveal a burst fracture of the skull indicating the tremendous force of a penetrating missile. Transventricular bihemispheric fragment tracts portend a poor prognosis. However, bilateral injuries above the level of the ventricles may be better tolerated and respond to bifrontal decompressive craniectomies.

Severe head injuries are often seen in combination with significant chest, abdomen, and extremity injuries. Rapid hemorrhage control, utilizing damage control concepts, is the priority to minimize secondary brain injury. Additionally, many combat penetrating or severe blast injuries include head and neck
structures. It is critical for a coordinated plan that includes oral maxillofacial, ENT, and ophthalmology.

Traditional Classification of Head Injuries

- **Open** injuries are more common in combat-injured versus civilian trauma.
- **Closed** injuries are still very common in blunt trauma sustained during combat operations. Blast injury may present as a closed-head injury.
- **Scalp** injuries may be closed (eg, contusion) or open (eg, puncture, laceration, or avulsion).
 - Any scalp injury may be associated with a skull fracture and/or underlying brain injury.
 - Open scalp injuries bleed profusely, even to the point of lethal blood loss, but usually heal well when properly repaired.
- **Skull fractures** may be open or closed, and are described as linear, comminuted, or depressed.
 - Skull fractures are usually associated with some degree of brain injury, varying from mild concussion, to devastating diffuse brain injury, to intracranial hematomas.
 - Open skull fractures are prone to infection if not properly treated.

Note: The previous descriptions remain a generalized broad classification that does not always correlate with the prognosis, role for treatment, or level of consciousness. Massive amounts of bleeding and soft-tissue injury can occur in the scalp and superficial cortex with relatively little significant injury to the deep structure of the brain. Alternatively, no external signs of trauma may be present in a patient with a severe “shear” injury to the brainstem, diencephalon, or corpus callosum with a severe comatous state that may persist to a vegetative coma.

Mechanisms of Injury

- **Primary injury** is a function of the energy transmitted to the brain by the offending agent.
 - Very little can be done by healthcare providers to influence the primary injury.
 - Enforcement of personal protective measures (eg, helmet, seatbelts) by the command is essential prevention.
- **Secondary injury** results from disturbance of brain and systemic physiology by the traumatic event.

Hypotension and hypoxia are the two most acute and easily treatable mechanisms of secondary injury.

- Other etiologies include seizures (seen in 30%-40% of patients with penetrating brain injuries), fever, electrolyte disturbances (specifically hyponatremia or hyperglycemia), and infection.
- All of the previously described conditions can be treated.
- Elevations of ICP may occur early as a result of a space-occupying hematoma or develop gradually as a result of brain edema or hydrocephalus.
- Normal ICP is 5–15 mm Hg, with normal CPP (CPP = MAP – ICP) usually >70 mm Hg (where CPP = cerebral perfusion pressure; MAP = mean arterial pressure).
- Decreases in perfusion pressure, as a result of systemic hypotension or elevated ICP, gradually result in alteration of brain function (manifested by impairment of consciousness), and may progress to global brain ischemia and death if untreated.

Patient Assessment and Triage
- The most important assessment is the **vital signs**.
- Next is the **level of consciousness**, best measured and recorded by the GCS score (Table 15-1).

Table 15-1. Glasgow Coma Scale

<table>
<thead>
<tr>
<th>Component</th>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor response (best extremity)</td>
<td>Flexion (decortication)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Extension (decerebration)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No response (flaccid)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>1–6</td>
</tr>
<tr>
<td>Eye opening</td>
<td>To pain</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>1–4</td>
</tr>
<tr>
<td>Best verbal response</td>
<td>Incomprehensible sounds</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No verbal response</td>
<td>1</td>
</tr>
</tbody>
</table>
• During the secondary assessment, attention should be placed on a complete examination of the scalp and neck. Fragments that enter the cranial vault with a lateral, transorbital, crossing the midline trajectory or bridging the cranial–cervical junction should be suspected as having associated neurovascular injuries. Wounds are typically contaminated. These wounds should be debrided with removal of foreign material; however, this should not delay definitive neurosurgical intervention for an underlying hematoma, brainstem compression, or depressed skull fracture that may exist. The scalp should be copiously irrigated clean with control of ongoing scalp hemorrhage. This can be accomplished with a head wrap, scalp clips, or surgical staples; a meticulous plastic surgical closure before neurosurgical evaluation is not appropriate and should not delay transfer.

• Triage decisions in the patient with craniocerebral trauma should be made based on first available GCS score (admission or prehospital), pupillary reactivity, and available resources.
 ◦ A GCS score of ≤5 indicates a poor prognosis; however, with aggressive comprehensive treatment, the combat casualty can have a higher survival than standard civilian neurotrauma patients (up to 35%) and higher GOSs. This is particularly true for patients who will have access to further rehabilitative care and higher treatment facilities. If triaged to an expectant category, they should be reassessed.
 ◦ A GCS score of ≤9 indicates that a casualty may do well if managed appropriately.
 ♦ In general, neurologically stable patients with penetrating head injury can be managed effectively in the ICU with airway and ventilatory support, antibiotics, and anticonvulsants while awaiting surgery.
 ♦ An exception to this would be a clinically deteriorating patient (ie, a suspected large hematoma—this should be considered a surgical emergency).

• Casualties with a GCS score of 6–8 can be the most reversible, with in-theater neurosurgical management involving control of ICP and preservation of cerebrospinal fluid. Treatment decisions may have to take into account access to further rehabilitative and supportive care.

• Casualties requiring evacuation to neurosurgical care should not
have transportation delayed for surgical management of injuries that are not life-threatening.

- **Pupillary reactivity.**
 - Be aware that eye injuries are common with associated intracranial injuries and can therefore affect pupillary exam.
 - A single dilated or nonreactive pupil adds urgency and implies the presence of a unilateral space-occupying lesion with secondary brain shift. Immediate surgery may be indicated.
 - The presence of bilateral dilated or nonreactive pupils is a dismal prognostic sign in the setting of profound alteration of consciousness.

A single dilated or nonreactive pupil adds urgency and implies the presence of a unilateral space-occupying lesion with secondary brain shift. Immediate surgery may be indicated. Transportation to neurosurgical care should not be delayed for treatment of injuries that are not life-threatening.

- **Radiographic evaluation.**
 - CT scanners are often available at Role 3 medical treatment facilities.
 - Noncontrast CT is the definitive radiographic study in the evaluation of acute head injury, and should be used liberally, as it greatly improves diagnostic accuracy and facilitates management. A CT angiogram should be performed after noncontrast CT in those cases wherein a major neurovascular injury may have occurred, including dural venous sinus injury, traumatic pseudoaneurysm, or dissection.
 - Skull radiographs still have a place in the evaluation of head injury (especially penetrating trauma).
 - In the absence of CT capability, AP and lateral skull radiographs help to localize foreign bodies in cases of penetrating injuries and can also demonstrate skull fractures.
 - This can help direct otherwise “blind” surgical intervention initially to the side of the head where the fracture is identified.
 - Closed-head injury can be associated with injury of the cervical spine.
 - Survivable cervical spine injury occurs in less than 2% of isolated penetrating head injury in combat trauma.
 - In blunt trauma (blast injury included), assume the presence of cervical spine injury and keep the cervical spine immobilized with a rigid collar until a standard CT of the cervical spine can be obtained. The CT scan should be of fine cuts (3 mm), and with sagittal and coronal reconstructions. AP, lateral, and open-mouth radiographs do not definitively clear a spine for bony injury in the obtunded patient, but may be of assistance when a CT scan is not
available. (See Joint Theater Trauma System [JTTS] Clinical Practice Guidelines.)

- In penetrating head trauma that may involve the cervical spine, CT scan should also be performed when the patient is obtunded or presents with motor or sensory deficits.

Management

- Medical.
 - Primary tenets are basic, but vital: protect the airway, ensure adequate ventilation, and assess and treat for shock (excessive crystalloid administration should be avoided).
 - In general, patients with a GCS score of ≤13 should be managed in a monitored setting.
 - **Management should be directed toward preventing secondary brain injury.**
 - Avoid hypoxia by maintaining the PaO$_2$ >80 mm Hg or oxygen saturation >93%.
 - Avoid vasoconstriction or vasodilation by maintaining the PaCO$_2$ between 35 and 40 mm Hg.
 - The head of the bed should be elevated >30°. (Use reverse Trendelenburg position of the bed if the thoracolumbar spine is unable to be cleared.)
 - The neck should be positioned in the midline and the cervical collar loosened to prevent occlusion of the internal jugular veins (and subsequent elevation of the ICP). Avoid placement of the internal jugular vein central line that may induce jugular vein thrombosis and subsequent increased ICP.
 - Sedate the severely brain-injured patient with short-acting agents (to allow frequent neuro exams) to limit stimulation and to avoid dyssynchrony with the ventilator—both leading to ICP elevation. (Propofol has been the preferred early sedating agent. Be cautious of hypotension with its use.)
 - Early initiation of hyperosmolar therapy with 3% normal saline is recommended for a GCS score of <12. May be given as a 250-mL bolus, followed by an infusion. The goal is serum sodium of 154–160 mEq/L with serum Osm <330 mmol/L (See JTTS Clinical Practice Guidelines on Severe Head Trauma.)
 - Administer Cefazolin 2 grams every 6–8 hours for 5 days in patients with penetrating injuries. (Vancomycin is a second-line alternate.)
 - Administer 5 days of Metronidazole for grossly contaminated...
wounds or those open wounds whose treatment has been delayed more than 18 hours.

- Phenytoin should be administered in patients with penetrating head injury or those with suspected or demonstrated significant intracranial blood volume (>1 cm) on CT scan. Use a 17-mg/kg load, in a normal saline piggyback and given over 20–30 minutes (no more than 50 mg/min, because rapid infusion may cause cardiac conduction disturbances).

 ◦ A maintenance dose of 300–400 mg/day, either in divided doses or once before bedtime, should be adequate to maintain a serum level of 10–20 µg/L.

- Alternatively, a Levetiracetam (Keppra) load of 1,500 mg IV with 1,000 mg bid has been effective with a lower cross-reactivity with other medications, including antibiotics, and less side-effect profile than phenytoin.

- Measure serum chemistries daily to monitor for hyponatremia or severe hypernatremia (>160 mEq/L). This should be done q6h if 3% NaCl or mannitol has been utilized.

- Treat initial coagulopathy aggressively (goal INR <1.4).

- Hyperglycemia and hypoglycemia should be treated.

- Blast overpressure central nervous system injuries.

 ◦ Supportive medical therapy is usually sufficient. Only in rare cases is an ICP monitor, ventriculostomy, or cranial decompression necessary. Delayed intracranial hemorrhages have been reported. Additionally, these patients have a higher susceptibility to subsequent injury and should be evaluated at a Role 4 medical treatment facility. Repetitive injury and exposure to blast overpressure may result in irreversible cognitive deficits.

- **Monitoring of ICP is recommended for all patients with a GCS score of ≤8 or for those patients undergoing intertheater aeromedical evacuation, wherein serial neurological examination is needed (in essence, it is an adjunct to a neurological examination).**

 ◦ An intraparenchymal ICP monitor (ICP EXPRESS by Codman is the US Air Force aeromedical-approved device) can be placed with relative ease into the brain parenchyma and gives an accurate reflection of the ICP. Cerebrospinal fluid is not able to be withdrawn.

 ◦ A ventriculostomy is preferred in a comatose patient at a Role 3 medical treatment facility, since both the measurement and
treatment of increased ICP can be performed. (A simple, fluid-coupled monitor ensuring that no pressurized bag is paired with the transducer.)

- Administer prophylactic antibiotic (Cefazolin 2 grams) prior to insertion.

- Make an incision just at or anterior to the coronal suture, approximately **2.5–3 cm** lateral to the midline (Fig. 15-2a,b).

- A twist drill craniostomy is performed, the underlying dura is nicked, and a ventricular catheter is placed into the frontal horn of the lateral ventricle (encountered at a depth of 5–6 cm) (Fig. 15-2b,c). Catheter should be directed toward the medial epicanthi on the coronal plane and toward the tragus in the sagittal plane.

- Even small ventricles can be easily cannulated by aiming the tip of the catheter toward the nasion in the coronal plane.

- Antibiotic-impregnated ventricular catheters are highly preferable; acceptable substitutes are an 8 Fr Robinson catheter or pediatric feeding tube.

- A key feature of this technique is to tunnel the drain out through a separate incision 2–3 cm from the primary one, thus reducing the risk of infection.
Fig. 15-2. Placement of the intracranial ventricular catheter.

- A sustained ICP >20 mm Hg should be treated (Fig. 15-3). (See JTTS Clinical Practice Guidelines.)
- Once an ICP monitor is in place, calculate a CPP (CPP = MAP – ICP).
- The goal of management is to maintain a CPP of >60 mm Hg.
- Intravascular volume status should be assessed, with euvolemia being the goal. This is difficult in the deployed setting and one reason to avoid mannitol. A central venous pressure (CVP) of 8–10 mm Hg in a young patient on normal levels of positive end-expiratory pressure (5 cm H₂O) should be suggestive of an adequate volume. Values less than this may indicate a need for additional fluid resuscitation. If additional blood is warranted, ensure that the packed red blood cell unit is the freshest
available to facilitate brain tissue oxygenation.

◊ If CPP remains low after adequate fluid resuscitation and reassessment for other sources of hypotension (bleeding, pharmacological, etc), initiate a vasopressin infusion at 0.04 units/min. If CPP remains low, begin a vasopressor, such as phenylephrine or norepinephrine (norepinephrine should begin at 5 µg/kg/min and titrate as needed; maximum dose being 20 µg/kg/min). If CPP is low, the initiation of a vasopressor to support CPP is warranted while the other measures previously mentioned can be performed.

Fig. 15-3. Levels of intervention to reduce ICP. CSF: cerebrospinal fluid.

- Sedation, head elevation, neck midline, and cervical collar loosened.
- Cerebrospinal fluid drainage to an ICP of 20 mm Hg if a ventricular catheter is in place.
- **Mild hyperventilation to a PaCO₂ of 30–35 mm Hg ONLY AS A BRIDGING MANEUVER until other measures take effect.** (Prolonged levels below this are deleterious, as a result of small vessel constriction and ischemia.) Once the acute ICP elevation is treated, ventilation should then be titrated to a PaCO₂ of 35–40 mm Hg.
- Hyperosmolar therapy should be initiated with a 250-mL bolus of 3% NaCl, followed by an infusion of 50 mL/h. If 3% NaCl has already been initiated and serum sodium levels remain below 150, consider a second bolus at this time. (See JTTS Clinical Practice Guidelines.)
- Normothermia should be obtained. Uncover the patient, use
fans, apply ice to the groin and axilla. Fever will lead to increased metabolic activity of the brain, increased ICP, and increased vasospasm. At Role 3/4, this can be performed with surface cooling gel pads with a closed-loop automated system calibrated with a Foley catheter thermistor.

- Utilize pharmacological paralysis if heavy sedation is not effective or as needed for transport (Vecuronium 5–10 mg IV PRN or as a drip for longer acting use). Maintain paralysis by assessing with a neurostimulation device to a “train of 4” (1/4) to prevent overmedication or undermedication.

- **Any patient who develops intracranial hypertension or deteriorates clinically should undergo prompt repeat CT. Adequate craniectomy should be confirmed.**

- Refractory intracranial hypertension may be managed with an initial bolus of 1 g/kg of **mannitol** and intermittent dosing of 0.25–0.5 g/kg q4h as needed.
 - Aggressive treatment with mannitol should be accompanied by placement of a CVP line because hypovolemia may ensue.
 - Serum osmolality is not able to be measured in the deployed setting, making mannitol's use complex and further management more difficult. **It can be used to “buy time” en route to the neurosurgeon.**
 - **Do not use mannitol in hypovolemic or underresuscitated patients because it will produce hypotension.**

- Pentobarbital coma can be used in refractory ICP elevation, but has been essentially replaced by decompressive craniectomy. Pentobarbital coma requires a CVP monitor and is limited to 72 hours maximum therapy. (**Load:** 2.5 mg/kg q15 min × 4 doses, 10 mg/kg/h ggt × 3 hours; **Maintenance:** 1.5 mg/kg/h; ideally, one would check a level and decrease maintenance if >5 mg% or becomes hypotensive.) The pulmonary, infectious, and cardiac adverse effects have limited its utility and recent application.

- At Role 4, mild hypothermia (32°–34°C) may be considered in isolated head injury, unresponsive to other measures. It should be avoided in the multisystem trauma patient.

- **Surgical.**
 - Goals: Stop hemorrhage, prevent infection, and relieve/prevent...
in intracranial hypertension.

- **ROLE 2**: Indications for emergent exploration and a damage control craniectomy (must be done in consultation with regional neurosurgeon, if available). These may be “presumed” at a Role 2 medical treatment facility, because CT scan will not be available.
 - Presumed space-occupying lesions with neurological deterioration (eg, acute epidural hematoma). This may be suspected with an unreactive/dilated pupil, especially when associated with contralateral hemiparesis.
 - Compound depressed fracture with significant neurological deterioration.
 - Penetrating injuries with significant neurological deterioration.
 - Relief of ICP with hemicranieotomy.
 - A large trauma flap should be planned for the evacuation of a mass lesion with significant underlying edema in the supratentorial space.
 - The common mistakes are failure to make the bone flap large enough due to a misplacement of the burr holes, not anterior enough, not posterior enough, or inadequate temporal bone removal at the skull base (Fig. 15-4).

- Shave hair widely and scrub and paint the scalp with betadine.
- General anesthesia.
- Administer empiric antibiotics (Cefazolin: 2 grams).
- Positioning can be adequately managed with the head in a doughnut or horseshoe-type head holder. The head will be turned away from the side of the craniectomy.
- Make a generous scalp incision to create an adequate flap (Fig. 15-5a).
- The flap should extend a minimum of 4 cm posterior to the external auditory canal and 2 –3 cm off midline. Exposing the frontal, temporal, and parietal lobes allows for adequate cerebral swelling and avoids brain herniation at the craniectomy edge.
- Ensuring that decompression in adults measures 15 cm in the AP dimension and 12 cm from the middle cranial fossa to the vertex is essential.
 - The flap should have an adequate pedicle to avoid ischemia; preservation of the superficial temporal artery should be performed.
 - Scalp hemorrhage can be controlled with a running, locking suture or Raney clips.
 - Retraction of the scalp flap over a rolled laparotomy sponge will
avoid kinking the flap, which also may lead to ischemia. Avoid placement of the sponge over the globe, however, since this can result in increased intraocular and therefore ICP and, in rare cases, blindness.

Fig. 15-4. Cranial landmarks and location of standard burr holes. Courtesy of E. Weissbial.

Fig. 15-5. Craniectomy flap. Courtesy of E. Weissbial.

- **Burr holes alone are inadequate to treat acute hematomas**, but are of diagnostic utility in the absence of a CT scanner. Exploratory burr holes may miss subfrontal or interhemispheric hematomas (Fig. 15-6).
Fig. 15-6. Hematomas missed with routine exploratory burr holes.

- The bone work may be done with a Hudson brace and Gigli saw (passed beneath the cranium with the help of a Gigli saw passer or tonsil clamp), though a power craniotome is certainly preferable if available (see Fig. 15-5a).

- A large dural opening should be created, using the entire expanse of the cranial opening with enough edge (~5 mm) left to close the dura at a later time.

- The base of the dural opening should be on the side near any neighboring major venous sinus to avoid injury to large draining veins and aggravation of cerebral edema.

- For the damage control craniectomy by the general surgeon, removal of devitalized tissue should be deferred to the neurosurgeon, as long as bleeding can be controlled.

- The hematoma should be gently evacuated with a combination of irrigation and mechanical removal. Copious irrigation will help to “float” bone fragments to the surface for easier removal.

- Thrombin-soaked gel foam may be the best and easiest adjunct measure for bleeding control. Bipolar cautery is ideal, or unipolar electrocautery with forceps, clips, and suture may be used. Avoid injury to the large midline sagittal sinus.

- The dura should be left open.

- The scalp can be closed full thickness with a running nylon suture.

- Skull flap (the removed portion of the skull) management has been evolving.

- For local nationals—wash aggressively and place the skull flap in the abdominal-wall fat pocket.

- Discard the flap in US patients. Reconstruction can be performed
using titanium, methyl methacrylate or acrylic at a later date.

- Apply a loose dressing using roller bandages around the entire head.
- Evacuate patient to neurosurgical care as soon as possible.
- **ROLE 3**: Indications for emergent exploration by neurosurgeon include:
 - Space-occupying lesions with neurological changes (e.g., acute subdural/epidural hematoma, abscess).
 - Intracranial hematoma producing a >5 mm midline shift or similar depression of cortex.
 - Compound depressed fracture with neurological changes.
 - Penetrating injuries with neurological deterioration.
- A similar procedure will be followed, but with the addition of the following:
 - Relief of ICP with wide hemicraniectomy/duraplasty/ventriculostomy.
 - A capacious duraplasty should be constructed with a subdural ICP/ventricular catheter in place, allowing monitoring and drainage from the injured hemisphere.
 - For unusual positioning of the head, so as to gain access to the subocciput, use a standard 3-point Mayfield fixation device.
- Approach to **penetrating injury with neurological changes** is aimed at removal of devitalized brain and easily accessible foreign bodies.
 - Perform copious irrigation with an antibiotic solution (e.g., Bacitracin) and a concerted attempt made to achieve watertight dural closure (i.e., pericranium).
 - Tension-free scalp closure is also essential, but replacement of multiple skull fragments in an attempt to reconstruct the skull defect is not appropriate if other options for reconstruction are available.
 - Excellent results can be achieved with cranioplasty after evacuation from theater and a sufficient delay to minimize risk of infection.
- A duraplasty should always be performed. A commercial dural substitute may be available; otherwise, pericranium, temporalis fascia, or tensor fascia lata may be used.
- Tack-up sutures should be placed around the periphery (no central tack-ups in the absence of a bone flap) of the dural exposure to close the dead space and discourage postoperative epidural hematoma
The galea of the scalp should be closed separately with an absorbable suture and staples used to close the skin.

- A single layer closure with heavy monofilament nylon is acceptable, but should definitely include the galea, with the sutures remaining in place for at least 14 days.
- A subgaleal or epidural drain should be used at the discretion of the surgeon.

- Apply a noncompressive dressing using roller bandages around the entire head.
- Obtain a postoperative CT scan.

NOTE: Injuries that include the frontal sinus, anterior skull base, and orbital roof should undergo early repair, which includes frontal sinus exenteration; cranialization of the frontal sinus; obstruction of the nasofrontal duct; and a multilayer closure with pericranium, fat, fascia, and autologous split-thickness bone.

Evacuation of the Head-Injured Patient

- A postoperative craniotomy/craniectomy patient should ideally first be observed for 12–24 hours prior to transport. Evacuating immediately may lead to the inability to treat delayed, postoperative hematomas that may occur.
 - All patients with a GCS score of <12 are likely to benefit with intubation.
 - Patients with a GCS score of <8T or patients who cannot be awakened en route by the transport team (each hour) will require ICP monitoring.
 - Arterial catheterization is necessary in patients where CPP monitoring is critical.
 - Patients with intracranial pathology should be neuro-surgically “optimized” on the ground prior to departure (eg, placement of a ventriculostomy, wide craniectomy, or evacuation of a hematoma).
 - The ICP monitor should be placed, position confirmed, secured, and working prior to departure. A ventriculostomy gives the transport team the therapeutic option of cerebrospinal fluid drainage for an elevated ICP.
 - The critical care evacuation team must be confident in its ability to medically treat increased ICP, treat related complications (eg, diabetes insipidus with DDAVP [Desmopressin]; hyperthermia; and seizure), and troubleshoot the ventriculostomy.
 - In addition to all standard preevacuation preparation (see Chapter 4, Aeromedical Evacuation):
 - Drain the ventriculostomy; avoid laying it down flat because the
vent filter may become moist and lead to an “air-lock.” Venting the tubing filter can be performed with a clean 21-gauge needle, if needed.

♦ If a head-injured patient deteriorates in flight and is not already intubated, intubation should be considered.

♦ Medical management of ICP in flight should follow the same algorithm as previously described; however, repeat CT scanning or return to the operating room are no longer an option.

♦ Loading a patient head-of-bed toward the front of the aircraft limits the effect of takeoff and a “nose up” attitude of the aircraft while in flight (3% in the C-17) on ICP.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 16

Thoracic Injuries

Introduction

About 15% of war injuries involve the torso. Those injuries involving the vasculature of the mediastinum (heart, great vessels, and pulmonary hilum) are generally fatal on the battlefield. Injuries of the lung parenchyma (the vast majority) can be managed by the insertion of a chest tube and basic wound treatment. Although penetrating injuries are most common, blunt chest trauma may occur and can result in disruption of the contents of the thorax, as well as injury to the chest wall itself. Blast injuries can result in the rupture of air-filled structures (the lung), as well as penetrating injuries from fragments.

The immediate recognition and treatment of tension pneumothorax is an important life-saving intervention in the treatment of chest injuries in combat. Distended neck veins, tracheal shift, decreased breath sounds, hyperresonance in the affected hemithorax, and hypotension are the cardinal signs, BUT may not be identified in the presence of other injuries/hypotension/hypovolemia. Immediate decompression is lifesaving.

The protection afforded by body armor greatly reduces the incidence of thoracic injuries, compared with extremity or head/neck injuries. Unfortunately, not all individuals have such protection; some tactical situations limit the use of body armor and some sustain chest injuries despite protection. In addition, military surgeons routinely treat injured civilians.

Anatomical Considerations

- Superior border is at the level of the clavicles anteriorly and the junction of the C7–T1 vertebral bodies posteriorly. The thoracic inlet at that level contains major arteries (common carotids and vertebrals), veins (anterior and internal jugulars), trachea, esophagus, and spinal cord.
- Within or traversing the container of the chest itself are the heart and coronary vessels, the great vessels—including arteries (aortic arch, innominate, right subclavian, common carotid, left subclavian, and descending aorta), veins (superior and inferior vena cava, azygous vein, and brachiocephalic vein), and pulmonary arteries and veins—distal trachea, and main stem bronchi, lungs, and esophagus.
- The inferior border is described by the diaphragm, attached anteriorly at the T6 level and gradually sloping posteriorly to the T12 level.
Penetrating thoracic injuries below the T4 level (nipple line) mandate evaluation for abdominal injuries due to the variable position of the diaphragm during the respiratory cycle (Fig. 16-1).

Evaluation and Diagnosis

Knowledge of the mechanism of injury (eg, blast, fragment, among others) may increase the index of suspicion for a particular injury. A complete and accurate diagnosis is usually not possible because of the limited diagnostic tools available in the setting of combat trauma. Nonetheless, because injuries to the chest can profoundly affect breathing and circulation (and, on rare occasion, the airway), a complete and rapid assessment of each injury is mandatory.

![Fig. 16-1. Thoracic incision of abdominal contents.](image)

- If the casualty is able to talk without hoarseness or stridor, there is reasonable assurance that the airway is intact.

Life-Threatening Injuries

Injuries requiring urgent intervention, include tension pneumothorax, massive hemothorax, and cardiac tamponade.

- **Tension pneumothorax.**
 - A patient with a known chest injury presenting with an open airway and difficulty breathing has a tension pneumothorax until proven otherwise. It requires rapid decompression and the insertion of a chest tube. Needle decompression alone is insufficient.

- **Massive hemothorax.**
 - The return of blood on chest tube placement may indicate a significant intrathoracic injury. Generally, the **immediate return of 1,500 cc of blood mandates thoracotomy**. When initial blood loss is <1,500 mL, but bleeding continues such that ongoing blood transfusions are required and all other sources of hemorrhage are eliminated, then thoracotomy may be indicated. Needle decompression will not identify hemothorax.
 - Casualties with massive thoracic hemorrhage require damage control techniques (see Chapter 12, Damage Control Surgery).
- **Cardiac tamponade.**
 - Distended neck veins (may be absent with significant blood loss) in the presence of clear breath sounds and hypotension indicate the possibility of life-threatening cardiac tamponade.
 - Fluid resuscitation may temporarily stabilize a patient in tamponade.
 - Perform an ultrasound if time permits.
 - If **positive**, proceed to the OR (pericardial window, sternotomy, thoracotomy). Any pericardial blood mandates median sternotomy/thoracotomy.
 - A **negative** ultrasound requires either repeat ultrasound or pericardial window, depending on the level of clinical suspicion.
 - Pericardiocentesis is only a stopgap measure on the way to definitive surgical repair.
- **Open pneumothorax** (hole in chest wall) is treated by placing a chest tube through a separate incision and sealing the hole. Alternatives include one-way valve chest dressings or a square piece of plastic dressing taped to the chest on three sides as a “flap valve.”
- **Flail chest** (entire segment of the chest wall floating due to fractures of a block of ribs, with two fractures on each rib) is commonly associated with pulmonary contusion under the flail segment. Patients with flail chest should be monitored closely for respiratory distress. Pain control is essential and may require intercostal nerve blocks or epidural catheters to optimize pulmonary mechanics. Patients with evidence of respiratory distress, poor or marginal oxygenation, or ventilation should be intubated and mechanically ventilated prior to air evacuation.

Surgical Management

Most penetrating chest injuries reaching medical attention are adequately treated with tube thoracostomy (chest tube) alone.

Tube Thoracostomy (Chest Tube)
- **Indications.**
 - Known or suspected tension pneumothorax.
 - Pneumothorax (including open).
 - Hemothorax.
- **Procedure (Fig. 16-2).**
 - In cases of tension pneumothorax, **immediate decompression with a large bore needle may be lifesaving.** An IV catheter (14 gauge, 3.25 inches in length) is inserted in the midclavicular line in the second intercostal space (approximately 2 fingerbreadths below the clavicle on the adult male). **Do not place medial to the nipple to avoid cardiac or vascular injury.** Entry is confirmed by the sound of air passing through the catheter, if a pneumothorax was actually present. **This must be rapidly followed by the insertion of a chest tube.**
In a contaminated environment, a single gram of IV Cefazolin (ANCEF) is recommended.

If time allows, prep the anterior and lateral chest on the affected side with povidone-iodine.

Identify the incision site along the anterior axillary line, intersecting the 5th or 6th rib. This is at nipple level in males and at the inframammary crease in females.

Inject a local anesthetic in the awake patient, if conditions allow.

Make a transverse incision, 3–4 cm in length, along and centered over the rib, carrying it down to the bone (Fig. 16-2a).

Insert a curved clamp in the incision, directed over the top of the rib, and push into the chest through the pleura. A distinct pop is encountered when entering the chest, and a moderate amount of force is necessary to achieve this entry. A rush of air out of the chest will confirm a tension pneumothorax. Insertion depth of the tip of the clamp should be limited by the surgeon’s hand to only 3 or 4 cm to make sure that the clamp does not travel deeper into the chest, resulting in damage to underlying structures.
• Spread the clamp gently and remove. The operator’s finger is then inserted to confirm entry (Fig. 16-2b,c).
• Insert a chest tube (24–36 Fr gauge) into the hole. All chest tube side holes must be in the pleural space (ie, not just below skin level). If no chest tubes are available, an adult endotracheal tube may be used (Fig. 16-2d).
• Attach a chest tube to a Heimlich valve, sealed Pleurovac, or bottles. In a resource-constrained environment, a cutoff glove with a slit in the end, or a Penrose drain may be attached to the end of the chest tube (Fig. 16-2e).
• Secure the tube with sutures, if possible, and dress to prevent contamination.

Resuscitative Thoracotomy

• Only indicated in penetrating injury in extremis or with recent loss of vital signs.
• 11% survival reported from combat casualties in Iraq/Afghanistan.
• If performed, a rapid assessment of injuries should be made; and, in the case of unsalvageable injuries, the procedure should be immediately terminated.

Procedure

• With the patient supine, make an incision in the left inframammary fold starting at the lateral border of the sternum extending to the midaxillary line (Fig. 16-3).

![Fig. 16-3. Incision for resuscitative thoracotomy.](image)

• The procedure should be abandoned upon discovery of devastating injuries to the heart and great vessels.
• An immediate right chest thoracostomy should be performed concurrently. If bleeding is identified, a rapid extension across the midline should be done, crossing through the sternum with a Lebsche sternum knife and performing a mirror-image thoracotomy. When doing this procedure, you will cut across both internal mammary arteries, which will be a significant source of bleeding and must be clamped as soon as possible.
• Elevating the anterior chest wall will expose virtually all mediastinal
structures.

- Open the pericardium and assess the heart. Use an anterior longitudinal incision to avoid phrenic nerve injury.

- **Priorities are to stop bleeding and restore central perfusion.**
 - Holes in the heart and/or great vessels should be temporarily occluded.
 - Temporary occlusion can be achieved with fingers, side-biting clamps, or Foley catheters with 30 cc balloons. Any other sterile device of opportunity is acceptable. A finger is usually sufficient, and less traumatic.
 - Major pulmonary hilar injuries should be cross-clamped en masse.
 - Distal thoracic aorta should be located, cross-clamped, and cardiac function restored via defibrillation or massage. (Make sure to open the mediastinal pleura over the aorta to securely apply the vascular clamp.)
 - If unable to restore cardiac function rapidly, abandon the operation.
- With successful restoration of cardiac function, injuries should be more definitively repaired.

Subxiphoid Pericardial Window

Subxiphoid pericardial window should not be attempted in an unstable patient. Unstable patients with penetrating injuries suspicious for cardiac injury should undergo immediate median sternotomy/thoracotomy.

Procedure

- With the patient supine, make a 4–5 cm longitudinal incision just on and below the xiphoid process through the skin and fascia.
- Bluntly dissect superiorly toward the heart exposing the phrenopericardial membrane below the heart.
- Sharply incise pericardium with care to avoid the heart, opening the pericardial sac, and exposing the underlying beating heart.
- Presence of pericardial blood mandates sternotomy to assess/repair cardiac injury.

Median Sternotomy

- **Indications.**
 - Suspected cardiac injury.
 - Positive pericardiocentesis/subxiphoid pericardial window.
 - Suspected injury to the great vessels in the chest.
 - Suspected distal tracheal injury.
- **Procedure.**
 - In the supine position, make a midline skin incision from the sternal notch to just below the xiphoid.
 - Through blunt/sharp dissection, develop a plane for several centimeters both superiorly and inferiorly beneath the sternum.
Divide the sternum with a sternal saw or Lebsche knife. Keep the foot of the knife/saw tilted up toward the under-surface of the sternum to avoid cardiac injury. Bone wax can be used to decrease bleeding on the cut edges of the sternum.

Separate the halves of the sternum using a chest retractor.

Carefully divide the pericardium superiorly, avoiding the innominate vein, and exposing the heart and base of the great vessels.

In general, exposure to the heart and great vessels is best achieved through a median sternotomy. For proximal left subclavian artery injuries, additional exposure (trap door) may be necessary.

Close with wire suture directly through the halves of the sternum, approximately 2 cm from the edge, or around the sternum through the costal interspaces using wire sutures. Large, permanent sutures can be used if wire is unavailable.

Place one or two mediastinal tubes for drainage, exiting through a midline stab wound inferior to the mediastinal skin incision.

Other Approaches

- **Supraclavicular (Fig. 16-4).**
 - Indication.
 - Mid- to distal subclavian artery injury.
 - Procedure.
 - Make an incision 2 cm above and parallel to the clavicle, beginning at the sternal notch and extending laterally 8 cm.

- **Trap door (Fig. 16-5).**
 - Indication.
 - Proximal left subclavian artery injury.
 - Procedure.
 - Perform supraclavicular approach as previously described.
 - Perform a partial median sternotomy to the 4th intercostal space.
 - At the 4th intercostal interspace, incise the skin laterally in the submammary fold to the anterior axillary line.
 - Divide the sternum laterally and continue in the 4th intercostal space to the anterior axillary line. The internal mammary artery will be divided and must be controlled.
 - It may be necessary to either fracture or remove a section of the clavicle to gain adequate exposure of the proximal left subclavian artery.
Fig. 16-4. Supraclavicular approach.

- Approach distal left subclavian artery injuries through a supraclavicular incision.

- **Thoracoabdominal.**
 - Indication.
 - Combined thoracic and abdominal injuries.
 - Procedure.
 - The resuscitative thoracotomy can be continued medially and inferiorly across the costal margin into the abdominal midline to complete a thoracoabdominal incision.
Alternatively, a separate abdominal incision can be made.

With right-sided lower chest injuries, the liver and retrohepatic vena cava can be exposed well using a right thoracoabdominal approach.

Specific Injuries

- Vascular.
 - Initially, holes in vessels should be digitally occluded. Stopgap measures include placing Fogarty or Foley catheters, side-biting clamps, or—in the case of venous injuries—sponge sticks.
 - Total occlusion or clamping may temporarily be necessary to allow resuscitation to continue and restore cardiac function.
 - If cardiac function cannot be restored within 5 to 10 minutes, the procedure should be abandoned (on-the-table triage) and the patient managed expectantly.
 - Repair of vessels should follow the principles detailed in Chapter 25 (Vascular Injuries), with shunting or repair by autogenous or synthetic grafts as indicated.

- Heart.
The usual result of high-velocity injuries to the heart is irreparable destruction of the muscle.

- Isolated punctures of the heart should be exposed (opening the pericardium) and occluded by finger pressure. Other methods include the use of a Foley catheter or skin staples.
- Use pledgeted horizontal mattress sutures (2-0 PROLENE) on a tapered needle for definitive repair. Care must be taken to avoid additional injury to coronary vessels. Extreme care must be taken to avoid tearing the cardiac muscle. Autologous pericardium can be used if commercial pledgets are not available (Fig. 16-6).
- Atrial repairs may include simple ligature, stapled repair, or running closures.
- Temporary inflow occlusion may prove helpful in repair.
- More complex repairs are impractical without cardiac bypass.

- Lung,
 - Tube thoracostomy alone is adequate treatment for most simple lung parenchymal injuries.
 - Large air leaks not responding to chest tubes or that do not allow adequate ventilation will require open repair (see section on “Tracheobronchial Tree”).
 - Posterolateral thoracotomy is preferred for isolated lung injuries. Anterior thoracotomy may also be used.
 - Control simple bleeding with absorbable suture on a tapered needle. Alternatively, staples (eg, TA-90) may be used for bleeding lung tears.

![Diagram of heart repair](image_url)

Fig. 16-6. Repair of penetrating cardiac injury.
Tractotomy: Open any bleeding tracts (through-and-through lung penetrations) with a GIA stapler or between straight vascular clamps and ligate bleeding points.

Do not simply close the entrance and exit points of penetrating tracts in the lung. With positive pressure ventilation, the risk is air embolism. The more central the injury, the higher the risk.

- Resection for bleeding may be indicated with severe parenchymal injury. Anatomical resections are not indicated, and simple stapled wedge excisions are recommended.
- Uncontrolled parenchymal/hilar bleeding, or complex hilar injuries with massive air leak, should be controlled with hilar clamping and repair attempted. Pneumonectomy is performed as a last resort, because survival is very low.

Tracheobronchial tree.
- Suspect the diagnosis with massive air leak, frothy hemoptysis, and pneumomediastinum.
- Confirm by bronchoscopy.
- Airway control is paramount.
- Median sternotomy is best approach.
- Repair over endotracheal tube with absorbable suture—may require segmental resection. Bolster with pleural or intercostal muscle flap, especially between the trachea and esophagus.
- Temporizing measures include:
 - Single lung ventilation.
 - Control the airway through the defect.

Esophagus.
- Isolated thoracic esophageal injuries are exceedingly rare. They will usually be diagnosed incidentally associated with other intrathoracic injuries.
- Diagnostic clues include pain, fever, leukocytosis, cervical emphysema, Hamman’s sign, chest X-ray evidence of pneumothorax, mediastinal air, and pleural effusion. Contrast swallow may confirm the diagnosis.
- Start IV antibiotics as soon as the diagnosis is suspected, and continue post-op until fever and leukocytosis resolve. This is an adjunctive measure only. Surgery is the definitive treatment.
- For stable patients in a forward location, chest tube drainage and a nasogastric tube placed above the level of injury are temporizing measures. Ideally, primary repair is performed within 6–12 hours of injury. Beyond 12 hours, isolation of the injured segment may be necessary.

The preferred approach for intrathoracic esophageal injuries is
posterolateral thoracotomy: right for the upper esophagus and left for the lower esophagus.

- Locate the injury by mobilizing the esophagus. Primarily repair with a single layer or two layers of 3-0 absorbable sutures and cover with the pleural or intercostal muscle flap.
- Drainage with chest tubes (one apical, one posterior) is recommended.
- If unable to primarily repair (as with a large segmental loss or severely contaminated/old injury), staple above and below the injury, place a nasogastric tube into the upper pouches, and place a gastrostomy tube into the stomach. Drain the chest as indicated previously. Complex exclusion procedures are not indicated in a forward operative setting.
- An alternative when the esophageal injury is too old for primary repair is to close the injury over a large T-tube, which converts the injury to a controlled fistula. The mediastinum is then widely drained using chest tubes or closed-suction catheters placed nearby. After a mature fistula tract is established, slowly advance the T-tube; later, the mediastinal drains can be slowly advanced.

- **Diaphragm.**
 - All injuries of the diaphragm should be closed.
 - Lacerations should be reapproximated with nonabsorbable 0 or 2-0 running or interrupted sutures.
 - Care should be exercised in the central tendon area to avoid inadvertent cardiac injury during the repair.
 - If there is significant contamination of the pleural space by associated enteral injuries, anterior thoracotomy and pleural irrigation and drainage with two well-placed chest tubes should strongly be considered.
 - Inadequate irrigation and drainage, such as when attempted through the diaphragmatic defect via the abdomen, can lead to a high incidence of empyema.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 17

Abdominal Injuries

Introduction
Changing patterns of warfare coupled with improvements in protective body armor have combined synergistically to decrease truncal and abdominal trauma in contrast to previous conflicts. Despite the many advances in protective body armor, penetrating abdominal trauma remains an inevitable component of war surgery. Rapid recognition and treatment of intraabdominal injuries are necessary to ensure maximal survival with the minimum amount of morbidity.

Trauma to the abdomen, both blunt and penetrating, can lead to occult injury that can be devastating or fatal if not recognized and treated in a timely manner. In an unstable patient who presents with an abdominal injury, the decision to operate is usually straightforward. In this circumstance, exploratory laparotomy should be performed as soon as the diagnosis is made. In a few rapidly hemorrhaging patients with thoracoabdominal injuries, a rapid decision must be made as to which cavity to enter first. This chapter addresses some of these issues.

Penetrating injuries below the nipples, above the symphysis pubis, and between the posterior axillary lines must be treated as injuries to the abdomen and mandate further workup and/or exploratory laparotomy.

- Posterior truncal penetrating injuries from the tip of the scapula to the sacrum may also cause retroperitoneal and/or intraabdominal injuries. A low threshold for exploratory laparotomy in these patients is warranted when limited diagnostic modalities are available.

Diagnosis of Abdominal Injury
- Document a focused history to include time of injury, mechanism of injury, previous treatments employed, and any drugs administered.
- Inspection of the fully exposed chest and abdomen will be the most reliable part of the physical examination, especially regarding penetrating injuries.
- The most important determination is whether or not a patient requires urgent laparotomy. Do not focus on making a specific diagnosis.

Indications for Laparotomy
The most important decision is to determine who needs surgery.

- Patients who mandate expeditious abdominal exploration are patients with the following signs and symptoms:
Physiological instability on presentation with an obvious penetrating abdominal injury.

- Penetrating abdominal wounds in the zones as described in the zone of injury explained above when no means to exclude an intraabdominal injury are available.
- Present with other penetrating truncal injuries with potential for peritoneal penetration and clinical signs/symptoms of intraperitoneal injury.
- Present in shock with potential for blunt abdominal injuries.

- When aeromedical evacuation is uncertain and will involve substantial distance, unstable patients with life- or limb-threatening circumstances should undergo laparotomy at the nearest facility that can provide surgical care.
- Laparotomy may be delayed if necessary, depending on the operational situation. These circumstances can be generally managed by the following guidelines:
 - Stable patients with intraperitoneal injury and no signs of shock can be managed nonoperatively for several hours.
 - Initiate resuscitation.
 - Start broad-spectrum antibiotics.
 - Arrange for transport as soon as possible to the next higher role of care.

When the tactical situation permits, aeromedical evacuation is effective, and the distance between Role 2 (Forward Surgical Team) and Role 3 (Combat Support Hospital) or higher level hospitals is short, all critically ill casualties should be medically regulated to the higher role when possible.

Diagnostic Adjuncts

Nonoperative adjuncts to diagnosing intraabdominal injuries—such as CT scan, ultrasound (US), and diagnostic peritoneal aspiration (DPA)—have been used to decrease the negative laparotomy rate in stable patients with blunt abdominal trauma. Some of the aforementioned modalities have been used in lieu of laparotomy to evaluate patients with penetrating injuries when the clinical suspicion is low for an intraabdominal injury. The practice of nonoperative management of penetrating abdominal trauma and reliance on diagnostic modalities to rule out intraabdominal injury have the potential of missing injuries, particularly in the resource-constrained environment with limited diagnostic modalities. The use of CT, DPA, and US in penetrating abdominal trauma should be reserved for stable patients with a mechanism of injury suggesting intraabdominal injury, but who lack obvious operative indication. These diagnostic modalities should be relied on only when good follow-up is possible and patients will not require long transports where rapid surgical intervention is not possible. US and DPA have some utility in unstable patients to help guide which cavity, thoracic or abdominal, should be entered first when planning
operative strategy. US and DPA may also serve as triage tools in the mass casualty situation.

Focused Abdominal Sonography for Trauma (FAST)

- Has become an extension of the physical examination of the abdomen, and should be performed whenever indicated and available in the setting of an abdominal injury.
- SonoSite is the current standard US military device used.
 - A 3.5–5 MHz curved probe is optimal.
 - The abdomen is examined through four standard sonographic windows: right upper quadrant, subxiphoid, left upper quadrant, and suprapubic.

Advantages:

- Noninvasive, may repeat frequently, quick, easy, identifies fluid in the abdomen reliably.
- Aids in prioritization of penetrating injury patients for the OR.
- Helps identify which cavity to open first in patients with thoracoabdominal injuries.
- Identifies pericardial fluid and may assist in the diagnosis of hemopneumothorax.

Disadvantages:

- Operator-dependent, may miss small amounts of fluid and hollow viscus injuries.
- Assists the surgeon in determining the need for laparotomy in patients with blunt abdominal injury, but does little to identify specific injuries.
- **DOES NOT** identify or stage solid organ or hollow viscus injury.

FAST Views

A typical portable sonography device is shown in Fig. 17-1. The standard locations for “sonographic windows” are shown in Fig. 17-2. Examples of positive and negative sonographic examinations are shown in Figs. 17-3 through 17-6.

![Fig. 17-1. Typical sonography device.](image)

Courtesy of SonoSite, Inc, Bothell, WA.
Fig. 17-2. The standard four locations for sonographic windows. (a) Subxiphoid. (b) Suprapubic. LUQ: left upper quadrant; RUQ: right upper quadrant.

Fig. 17-3. (a) Right upper quadrant. (b) Normal and (c) abnormal negative sonographic examinations for the right upper quadrant.
Fig. 17-4. (a) Subxiphoid. (b) Normal and (c) abnormal negative sonographic examinations for the cardiac window. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.

Fig. 17-5. (a) Left upper quadrant. (b) Normal and (c) abnormal negative sonographic examinations for the left upper quadrant.
Fig. 17-6. (a) Suprapubic. (b) Normal and (c) abnormal negative sonographic examinations for the pelvic window. Abd: abdomen; BL: bladder. FF: free fluid.

Diagnostic Peritoneal Aspiration

Historically, diagnostic peritoneal lavage played a role in blunt abdominal trauma diagnosis; however, the utility of the lavage continues to decrease in the setting of improvements in both US skills and technology, coupled with the widespread use of CT scan. Far-forward combat medical units are not routinely outfitted with appropriate equipment, such as microscopic and laboratory functions that provide cell counts or fluid enzyme determinations. Thus, the only reliable information obtained from a lavage is the aspiration of gross blood or DPA.

Advantages:
- Quickly ascertain intraperitoneal blood.
- May help determine which body cavity to enter first in an unstable patient with truncal injury.

Disadvantages:
- Invasive, often not reproducible, significantly slower than FAST.
- May be useful when US and/or CT are not available, or as triage tool.
- The following represent positive DPA:
 - Aspiration of 10 cc of gross blood.
 - Aspiration of enteric contents.
- DPA is **NOT** recommended for penetrating abdominal trauma.
- Basic technique:
 - Open technique using a small, vertical infraumbilical incision and any tubing (IV, Foley, straight, or balloon catheter).
 - Aspirate peritoneum.

CT Scan

Advantages:
Defines injured anatomy in **stable** patients and provides a modality that may prevent unnecessary laparotomy in appropriately selected patients.

When available and in **STABLE** patients, CT scan may be useful for:

- The workup of penetrating abdominal injuries where there is a question of whether or not the projectile traversed the peritoneal cavity.
- The evaluation of isolated penetrating retroperitoneal and posterior injuries.

When using CT scan to evaluate penetrating retroperitoneal injuries, triple-contrast CT scan (oral, IV, and rectal) remains important to rule out injuries.

Disadvantages:

- Slow.
- Requires contrast use and equipment availability.
- May miss small hollow organ injury.
- Requires transport away from the resuscitation area.
- Operator-/interpreter-dependent.

There is **NO ROLE** for CT scan in the evaluation of an **unstable** patient with obvious abdominal trauma, regardless of the mechanism of injury.

Wound Exploration

- Blast injuries and improvised explosive devices create many fragments that may penetrate the skin, but not the abdominal cavity. Operative local wound exploration in the stable patient with a normal or equivocal examination may help determine the need for formal exploratory laparotomy.
- When possible, wound exploration should be performed in the OR with adequate instruments and lighting.
- Finding of an isolated fragment in the abdominal wall superficial to the anterior fascia may obviate the need for formal laparotomy.
- If there is any doubt that the fragment penetrated the abdominal cavity (eg, the tract of the projectile is not adequately identified or the fragment cannot be seen on plain film radiograph), formal laparotomy should be performed.
- CT scan, when available and used as an adjunct to wound exploration, may also be helpful in determining the trajectory of fragments and help plan wound exploration.

Operative Planning and Exposure Techniques

- Administer broad-spectrum IV antibiotic prior to surgery and continue for 24 hours.
 - Redose short half-life antibiotics intraoperatively and consider redosing antibiotics with large amounts of blood loss.
- Laparotomy should be performed through a midline incision.
 - When wide exposure is needed, extend the incision superiorly just lateral to the xiphoid process and inferior to the symphysis pubis.
• Quickly pack all four quadrants with lap sponges while looking for obvious injuries.
• Control hemorrhage with packing or clamping of bleeding vessels.
• **Once packed and hemorrhage controlled, assess physiological status.**
 • Considering casualty physiology, your current resources, and location, create an operative plan to control hemorrhage, contamination, and truncate the operation if necessary.
 • Attempt to limit initial exploratory laparotomy to <60 minutes.
 • **ALWAYS** consider damage control principles throughout the procedure (see Chapter 12, Damage Control Surgery).
 • If the patient is stable, consider definitive surgery. In general, definitive surgical procedures should be limited to procedures once the patient has been resuscitated and at a level of care with the greatest diagnostic and therapeutic resources available for patient care (ie, Role 3 facility).
• Identify all solid organ and hollow viscus injuries.
• Eviscerate the small bowel to increase workspace, if needed.
 • If needed, divide both the left and right triangular ligamentous attachments of the liver to improve exposure in the right upper quadrant or upper midline.
• Fold the left lateral segment of the liver down and to the right to improve exposure at the gastroesophageal junction.
• Improve exposure to the liver by extending the incision into the inferior sternum and/or across into the lower right chest (thoracoabdominal).

Gastric Injuries
• The stomach is a vascular organ and will do well after most any repair.
• The entire stomach must be visualized.
 • When exploring the stomach, enter the lesser sac by dividing the gastrocolic ligament and reflecting the stomach up toward the head to evaluate for posterior wall injuries.
• Encircle the distal esophagus with a Penrose drain to provide traction and improve visibility for high midline injuries.
• Once all gastric injuries have been identified, minimally debride and primarily close stomach defects in 1 or 2 layers with permanent sutures.
• Place the nasogastric tube and confirm position with palpation.
 • Consider use of a large gastrostomy tube (a large Foley or Malecot may work if no gastrostomy tubes are available).
 • Remember to have the nasogastric tube or gastrostomy tube irrigate postoperatively with 30 mL of saline every 2 hours to ensure that the tube does not become clogged.

Duodenal Injuries

Injuries to the duodenum are typically associated with massive upper abdominal trauma. Thus, early consideration for damage control surgery should be
considered (see Chapter 12, Damage Control Surgery).

- Missed injuries of the duodenum have devastating morbidity.
- Bile staining or hematoma in the periduodenal tissues mandates full exploration of the duodenum (Kocher maneuver).
- Minor injuries can be primarily repaired in two layers and closed-suction drains (JP [Jackson-Pratt] drains) placed around the repair.
- Major injuries should be primarily repaired if they do not involve the ampulla, and luminal diameter will not be narrowed by >50%.
- Options for closing injuries of >50%:
 - Close duodenal wall around a tube duodenostomy.
 - Use a no. 2-0 absorbable suture (VICRYL).
 - Use the largest Malecot catheter or drainage tube available.
- Perform a pyloric exclusion procedure.
 - Through a gastrotomy, ligate the pylorus with an absorbable suture or by using a noncutting TA stapling device. Staple but **do not divide** the pylorus.
 - Close the duodenal injury.
 - Create a gastrojejunostomy anastomosis between the jejunal limb and the gastrotomy (Fig. 17-7).
 - Remember to place a feeding jejunostomy for nutrition.
 - The procedure of **LAST RESORT** is pancreaticoduodenectomy. In the acute and damage control settings, there is NO role for reconstruction during the initial procedure in patients with traumatic pancreaticoduodenectomy.
- Duodenal injury caveats.
 - Widely drain all injuries with closed-suction drains.
 - Any method used to close the pylorus will typically last only 14–21 days.
 - The possibility of injury to the biliary and pancreatic ducts should be considered when injuries involve the second portion of the duodenum or the pancreatic head.
Pancreatic Injuries
- Any injury to the pancreas/duct requires drainage.
- Even if ductal injury is not identified, it should be presumed and drained with **multiple** closed-suction drains.
 - Resect clearly nonviable pancreatic body/tail tissue.

| Major injuries to the head of the pancreas may require pancreaticoduodenectomy. If pancreaticoduodenectomy is performed as part of damage control surgery, reconstruction should be delayed until the patient has been resuscitated. Consideration for reconstruction should be given if definitive surgery will take more than 72 hours from time of injury. If reconstruction is not possible, then wide drainage with multiple closed-suction drains should be used and the patient’s abdomen left open to facilitate reconstruction. |

- Transection or near-transection of the pancreatic duct can be treated by:
 - Drainage.
 - Distal pancreatectomy (typically requires splenectomy).

Liver Injuries
- Most liver injuries can be successfully treated with direct pressure and/or packing, followed by aggressive resuscitation and correction of coagulopathy.
- If packing is not successful, generous exposure is required and should be gained early and aggressively.
Mobilize triangular, falciform, and coronary ligaments for full exposure.
Use extension into the pericardium and/or right chest, if needed.
Place several laparotomy pads above the dome of the liver to displace it down into the field of view.

- Short duration clamping of the hepatic artery and portal vein (Pringle maneuver) may be required to slow bleeding while gaining other control.
- If bleeding continues despite the Pringle maneuver, especially from behind the liver, this indicates a retrohepatic venous injury or a retrohepatic vena caval injury. These injuries carry an extremely high mortality. If the retrohepatic hemorrhage is controlled with packing, the best mechanism to deal with these injuries is to maintain tamponade by aggressively packing the liver and ICU resuscitation. If necessary, these injuries may be addressed once the patient has been more adequately resuscitated and transferred to a higher role of care with the resources to care for the patient.
- As a last resort, consider cross-clamping the aorta in the left chest or upper abdomen if all other modalities fail to control hemorrhage to the liver.
- Use finger fracture of liver parenchyma to expose deep bleeding vessels and oversew directly.
- Large exposed injuries of the liver parenchyma can be controlled in a number of ways:
 - Exposed large vessels and ducts should be suture-ligated.
 - Overlapping mattress sutures of no. 0 chromic on a blunt liver needle is fast and effective for controlling raw surface bleeding.
 - Placement of SURGICEL on the raw surface and high-power electrocautery is also effective.
- Bleeding tracts through the liver can be controlled by tying off the end of a Penrose drain, placing it through the tract, and “inflating” it with saline to tamponade the tract.
- Urgent surgical resection is strongly discouraged:
 - Indicated only when packing/pressure fails.
 - Follow functional or injury pattern, not anatomical lines.
- Use a pedicle of omentum in a large defect to reduce dead space.

Prevention and treatment of coagulopathy, hypothermia, and acidosis are essential in the successful management of major liver injuries. APPLY DAMAGE CONTROL TECHNIQUES EARLY.

- Retrohepatic vena cava and hepatic vein injuries require a tremendous amount of resources (blood products, operating room time, equipment) typically unavailable in a forward surgery setting (on-table triage in mass casualty).
 - Packing is the most successful option.
 - If packing fails, consider hemorrhage control by total hepatic vascular isolation or atriocaval shunt (Fig. 17-8) in order to effect injury repair.
• Provide generous closed-suction drainage around major liver injuries.

Biliary Tract Injuries

- Injuries to the gallbladder are treated by cholecystectomy.
- Repair common bile duct injuries over a T-tube.
 - A no. 4-0 or smaller absorbable suture is used on the biliary tree.
- Extensive segmental loss requires choledochoenterostomy or tube choledochostomy (depending on time and patient physiology).
- Drain widely.

Splenic Injuries

- Intraoperative splenic salvage has **NO ROLE** in combat surgery.
- Empiric left subphrenic drains should not be routinely placed postsplenectomy if the pancreas is uninvolved in the injury.
- Splenic injury should prompt exploration for associated diaphragm, stomach, pancreatic, and renal injuries.
- Theater clinical practice guidelines exist to help guide protocols for postsplenectomy immunization. All postsplenectomy patients should be immunized with pneumococcal, hemophilus, and meningococcal vaccine.

Fig. 17-8. Atriocaval shunt.

- (A) Proximal clamp occlusion; (B) purse-string suture, right atrium; (C) fenestrations made in tube; (D) suprahepatic inferior vena cava control; (E) Pringle maneuver; and (F) endotracheal tube, balloon inflated above renal veins.

Small Bowel Injuries

- Basic tenets:
 - Debride wound edges to freshly bleeding tissue.
 - Close enterotomies in 1 or 2 layers (skin stapler is a rapid alternative for damage control).
- With multiple enterotomies to one segment of <50% of small bowel length,
perform single resection with primary anastomosis. Avoid multiple resections.

Colon Injuries

Simple, isolated colon injuries are uncommon. In indigenous populations and enemy combatants (eg, patients who cannot be readily evacuated), diversion with colostomy should be the procedure of choice.

- Simple, isolated colon (nonrectal) injuries should be repaired primarily.
 - Debride wound edges to normal, noncontused tissue.
 - Perform two-layer closure or anastomosis.
- For complex injuries, strongly consider damage control followed by colostomy/diversion, especially when associated with:
 - Massive blood transfusion requirement.
 - Ongoing hypotension.
 - Hypoxia (severe pulmonary injury).
 - Reperfusion injury (vascular injury).
 - Multiple other injuries.
 - High-velocity injuries.
 - Extensive local tissue damage.
 - Distal colon (ie, distal sigmoid and rectal) injuries should be resected and ostomy formed due to the high incidence of leak from anastomosis.
- Potential breakdown of a repair or anastomosis is high in the setting of concomitant pancreatic injury.
- Damage control technique for colon injury:
 - Control contamination with ligation/stapling of bowel.
 - Resuscitation in the ICU.
 - Creation of a stoma during the definitive reconstruction.
 - Intestinal continuity should be restored or ostomy performed within 72 hours of original damage control procedure.
- Clearly document treatment for optimal followup throughout roles of care.
- At the time of formation, a colostomy should be matured.

Rectal Injuries

Rectal injuries can be difficult to diagnose unless very dramatic. Any question of an injury raised by proximity of another injury, rectal examination, or plain abdominal film radiography MANDATES proctoscopy. Gentle distal washout with dilute Betadine solution may be required to be able to perform rigid proctoscopy.

- Findings can be dramatic disruptions of the rectal wall, but more commonly are subtle punctuate hemorrhages of the mucosa. All abnormal findings should prompt corrective intervention.
 - Diversion, Debridement, Distal washout, and Drainage (the 4 D’s of rectal injury). Diversion is the most important aspect of rectal injury
management.
- Transabdominal sigmoid colostomy is easiest.
- If the injury has not violated the peritoneum, exploration of the extraperitoneal rectum should NOT be done at laparotomy unless indicated for an associated nonbowel injury. This avoids contaminating the abdominal cavity with stool.

- Debridement and closure of small- to medium-sized rectal wounds are unnecessary in patients who have been diverted and drained.
- Distal washout may be necessary to assess the injury. Use gentle pressure when irrigating to minimize contamination of the perirectal space.
- Routine use of presacral drains is discouraged unless gross contamination and infection are present at the time of surgery. The creation of a space to place drains should be avoided.
- If needed, presacral drains are placed through the perineum into the retrorectal space (Fig. 17-9).

![Fig. 17-9. Presacral drain.](image)

- Peritonealized rectal injuries are easily accessed transabdominally and should be repaired and protected with diversion.

Retroperitoneal Injuries
- Left medial visceral rotation moves the colon, pancreas, and small bowel to expose the aorta rapidly. Proximal aortic control can be rapidly obtained with compression or a clamp on the aorta at the esophageal hiatus, or through the left chest.
- Right medial visceral rotation (colon + Kocher maneuver to elevate duodenum) exposes the subhepatic vena cava.
- Three zones of the retroperitoneum (Fig. 17-10):
 - **Zone I—central, supracolic**: explore for all injuries.
 - **Zone II—lateral**: blunt trauma, avoid exploration if possible because exploration increases the likelihood of opening a stable hematoma and, thus, precipitating nephrectomy. **Explore for penetrating trauma.**
Fig. 17-10. Three zones of the retroperitoneum.

- **Zone III—pelvic**: blunt trauma, do not explore, likely associated with pelvic fracture. **Explore for penetrating trauma.**
- Gain proximal vascular control before entering the hematoma.

Abdominal Closure
- Massive swelling associated with large amounts of blood loss and resuscitation and large injuries may necessitate temporary closures (see Chapter 12, Damage Control Surgery).
 - Avoid closing the fascia under the following circumstances:
 - Further abdominal procedures are anticipated.
 - Enteric viscera left in discontinuity.
 - Damage control laparotomy.
- A few penetrating battlefield wounds are isolated, small, and without visceral contamination, and it is perhaps safe to close the skin. **Most are not, and these patients will be passed quickly from one surgeon to the next, so the risk of missed and catastrophic infection is increased; the skin should not be closed.**
- Retention sutures should be considered, but should be reserved for patients undergoing definitive surgical repair. There is no role for the placement of retention sutures if a patient is going to return to the OR for scheduled repeat laparotomy.
Chapter 18
Genitourinary Tract Injuries

Introduction

Genitourinary injuries constitute approximately 5% of the total injuries encountered in combat. Their treatment adheres to established surgical principles of hemostasis, debridement, and drainage. Proper radiographic evaluation prior to surgery may replace extensive retroperitoneal exploration at the time of laparotomy in the diagnosis of serious genitourinary injuries.

Genitourinary wounds, aside from injuries of the external genitalia, are typically associated with serious visceral injury.

Renal Injuries

- Most renal injuries, except for those of the renal pedicle, are not acutely life-threatening. Undiagnosed or improperly treated injuries, however, may cause significant morbidity.
- Although the vast majority of blunt renal injuries will heal uneventfully with observation and conservative therapy, a significant number of renal injuries in combat will come from penetrating wounds and require exploration.

 The evaluation of a suspected renal injury is based on the type of injury and physical examination.

- Hematuria is usually present in patients with renal trauma, and gross hematuria in the adult patient is concerning for a significant injury. The absence of hematuria, however, does not exclude renal trauma. Renal injury must be suspected in patients who have sustained significant concurrent injuries, such as multiple rib fractures; vertebral body or transverse process fractures; crushing injuries of the chest or thorax; or penetrating injury to the flank, chest, or upper abdomen.

<table>
<thead>
<tr>
<th></th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blunt Trauma</td>
<td>All patients with gross hematuria (regardless of initial SBP) and those patients with microscopic hematuria, whose initial SBP is (<90) mm Hg, should undergo contrast-enhanced CT scan if/when they become hemodynamically stable.</td>
</tr>
<tr>
<td>Renal Injury Grading</td>
<td></td>
</tr>
</tbody>
</table>
RENAL INJURY
Penetrating renal injury
= Abdominal exploration

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subcapsular hematoma.</td>
</tr>
<tr>
<td>2</td>
<td>Small parenchymal laceration.</td>
</tr>
<tr>
<td>3</td>
<td>Deeper parenchymal laceration without entry into the collecting system.</td>
</tr>
<tr>
<td>4</td>
<td>Laceration into the collecting system with extravasation; vascular injury with contained hemorrhage.</td>
</tr>
<tr>
<td>5</td>
<td>Shattered kidney or renal pedicle avulsion.</td>
</tr>
</tbody>
</table>

- Hemodynamically stable patients can usually be managed without operation.
- Vascular repair is indicated for salvageable kidneys with renal artery or vein injury (see vascular CPGs for more details).
- Ureteral stent may need to be placed for persistent urinary extravasation.

CPGs: Clinical Practice Guidelines; SBP: systolic blood pressure.

- Adult patients who present with gross hematuria require further evaluation of their kidneys.
- CT provides excellent staging of renal injuries and aids in the decision whether or not to explore the injured kidney.
- Renal trauma is categorized by the extent of damage to the kidney.
 - **Minor injuries.**
 - Consist of renal contusions or shallow cortical lacerations.
 - Most common after blunt trauma and usually resolve safely without renal exploration.
 - **Major injuries.**
 - Consist of deep cortical lacerations (with or without urinary extravasation), shattered kidneys, renal vascular pedicle injuries, or total avulsion of the renal pelvis.
 - There is an 80% incidence of associated visceral injuries with major renal trauma. Most cases will require a laparotomy for evaluation and repair of concurrent intraperitoneal injuries.
 - Operative intervention includes debridement of nonviable renal tissue (partial nephrectomy), closure of the collecting system, and drainage of the retroperitoneal area.
 - Kidney preservation should be considered if at all possible, although total nephrectomy may be required for the severely damaged kidney or the unstable patient. An attempt for verification of the presence of contralateral kidney by palpation should be attempted prior to nephrectomy.

Vascular control of the renal pedicle can be obtained prior to opening the perirenal fascia, when control of hemorrhage from the kidney requires exploration of the retroperitoneum.

- Operative technique.
- Total nephrectomy is immediately indicated in extensive renal injuries when the patient’s life would be threatened by attempted renal repair. The preferred approach in these situations is mobilization of the kidney by medial visceral rotation. This approach has been shown to be faster and is associated with less blood loss, compared with attempting vascular control of the renal pedicle prior to exploration.

- When partial or complete renal salvage is planned, obtain vascular control from a periaortic approach to the renal vascular pedicle.
 - The small intestine is retracted laterally and superiorly, and the posterior peritoneum is incised over the aorta.

![Fig. 18-1. Exposure of the left renal hilum.](image)

- The left renal vein, crossing anterior to the aorta, must be mobilized to gain control of either renal artery.
- Atraumatic vascular clamps are used to occlude the appropriate artery.

- Although vascular control in this fashion may provide the safest approach against renal hemorrhage and reduce the likelihood of nephrectomy, it is not a commonly performed maneuver by either urologists or general surgeons. Direct reflection of the colon to expose the kidney is feasible (Fig. 18-1). A kidney pedicle clamp should be readily available for this approach.
Damaged renal parenchyma can be locally debrided (Fig. 18-2), excised in a partial nephrectomy (Fig. 18-3), or removed in a total nephrectomy, depending on the degree of injury and the condition of the patient.

Fig. 18-2. Steps in renal debridement.

Damage control management may require nephrectomy for major renal injuries as a life-saving measure.

- Watertight closure of the collecting system with absorbable suture prevents the development of a urine leak (Fig. 18-3b).
 - Urinary diversion is typically unnecessary if formal renal reconstruction is accomplished.
 - For the sake of expediency or in the presence of associated injuries of the duodenum, pancreas, or large bowel, diversion may be required.
 - Tube nephrostomy, ureteral stent, or ureterostomy may be utilized.

Fig. 18-3. Steps in partial nephrectomy.

- The reconstructed kidney should be covered by perirenal fat, omentum, or fibrin sealant (see Fig. 18-3c).
- A closed-suction drain should be left in place.

Ureteral Injuries

Ureteral injuries are rare, but are frequently overlooked when not appropriately considered. They are more likely in cases of retroperitoneal hematoma and injuries of the fixed portions of the colon, duodenum, and spleen.

- Isolated ureteral injuries are rare and usually occur in conjunction with other significant injuries. They can represent a difficult diagnostic challenge in both the preoperative and intraoperative settings.
 - Hematuria is frequently absent.
 - Blast injury to the ureter may produce significant delayed complications even when the CT is normal and the ureter appears visibly intact. Placement of an indwelling stent is reasonable when a high-velocity or blast injury occurs in proximity to the ureter.
 - If a ureteral injury is initially missed and presents in a delayed fashion, urinary diversion with a nephrostomy tube and delayed repair at 3–6 months is a safe approach.

- Operative technique.
 - Intraoperative localization of the ureteral injury is facilitated by IV injection of indigo carmine/methylene blue or direct injection into the collecting system under pressure.
 - Basic principles of repair.
 ✦ Minimal debridement and mobilization.
 ✦ Primary tension-free, 1-cm spatulated anastomosis using an interrupted single-layer absorbable suture (4–0 or 5–0) closure technique.
 ✦ Internal (double J ureteral stent) and external drainage.
 ✦ Lengthening maneuvers.
 ◦ Ureteral mobilization.
 ◦ Kidney mobilization.
 ◦ Psoas hitch (Fig. 18-4).
 ◦ Boari flap.
Isolate repairs with omentum or posterior peritoneum.

The type of repair is based on the following:

- Anatomical segment of the traumatized ureter (upper, middle, and lower third).
- Extent of segmental loss.
- Other associated injuries.
- Clinical stability of the patient.
- Upper or middle ureteral injuries.
Short segment loss/transaction: Perform a primary ureteroureterostomy over stent (Fig. 18-5).

Long segment loss: May require a temporizing tube/cutaneous ureterostomy with stent placement or ureteral ligation with tube nephrostomy.

- Lower ureteral injuries.
 - When the injury occurs near the bladder, a ureteroneocystostomy should be performed (Fig. 18-6). This is typically completed by fixing the bladder to the fascial covering of the psoas muscle using permanent suture, such as 2.0 or 3.0 PROLENE. A transverse cystotomy assists in elongating the bladder to that location and facilitates the construction of a tension-free anastomosis.

![Fig. 18-6. Ureteroneocystostomy.](image)

When a distal ureteral injury is associated with a rectal injury, ureteral reimplantation is not recommended; temporary diversion should be performed.

Ureteral injuries in the combat setting may be best managed with temporary tube drainage with a small feeding tube or ureteral stent, followed by delayed reconstruction.

Bladder Injuries

Bladder wounds should be considered in patients with lower abdominal gunshot wounds, pelvic fractures with gross hematuria, or those patients unable to void following abdominal or pelvic trauma.

- Bladder disruptions can occur on the intraperitoneal or extraperitoneal surface of the bladder. The location may change the symptoms, complications, and management of this injury.
- After ensuring urethral integrity in appropriate cases (see Urethral Injuries, p. 286), evaluation of the bladder is performed radiographically with a cystogram.
 - Cystography is performed using a three-film technique: scout or plain film KUB concentrating on the pelvis, full-bladder radiograph after
retrograde filling of the bladder with contrast, and a postdrainage radiograph.

- **Technique:** Fill the bladder by gravity with a urethral catheter using radiopaque contrast medium elevated 20–30 cm above the level of the abdomen. At least 300 cc (5–7 cc/kg in children) are required for an adequate study. Take a full-bladder radiograph.
- Drain the bladder using the catheter and take a postdrainage radiograph. Small extraperitoneal areas of extravasation may be apparent only on the postevacuation film. CT cystogram is the preferred study when available.

- Operative technique.
 - Intraperitoneal injuries.
 - Cystography reveals contrast medium interspersed between loops of bowel.
 - Management consists of immediate exploration, multilayer repair of the injury with absorbable suture, suprapubic tube cystostomy, and drainage of the perivesical extraperitoneal space. Consider opening the bladder to allow more thorough inspection for injuries and repair bladder through cystotomy.
 - Extraperitoneal injuries.
 - Bladder laceration is most often the result of laceration by bony fragments from a pelvic fracture.
 - Cystography reveals a dense, flame-like extravasation of contrast medium in the pelvis on the postevacuation film.
 - The bladder usually heals with 10–14 days of Foley catheter drainage without the need for primary repair. If the urine is clear, catheter drainage alone is preferred for treatment of most extraperitoneal ruptures.
 - In cases of abdominal exploration for other injuries, primary repair and drainage are necessary if the extraperitoneal space is entered. Repair can be completed from inside the bladder through a cystotomy to avoid disturbing any pelvic hematoma. Patients with concurrent rectal injuries should be managed more aggressively and may benefit from hematoma evacuation and primary bladder repair.

Urethral Injuries

A urethral injury should be suspected in patients with a scrotal hematoma, blood at the meatus, or a floating/high-riding prostate. Catheterization is contraindicated until urethral integrity is confirmed by retrograde urethrography.
• Retrograde urethrography is performed to evaluate the anatomy of the urethra.
 ◦ Take oblique radiographs of the pelvis to avoid “end-on” imaging that obscures the bulbous urethra.
 ◦ Insert the end of a sterile catheter tip syringe (60 cc) into the urethral meatus while grasping the glans to prevent leakage. Alternately, insert an unlubricated Foley catheter into the fossa navicularis (approximately 3 cm) and inflate the balloon with 3 cc of water.
 ◦ Gently instill 15–20 cc of water-soluble contrast. The radiograph is taken during injection.
 ◦ Contrast must be seen flowing into the bladder to clear the proximal urethra of injury. Posterior urethral injuries seen in pelvic fractures may be missed otherwise.
 ◦ If no injury is identified, carefully place a Foley catheter.

If any difficulty in passing the catheter is encountered, the urethra should not be instrumented, and a suprapubic tube cystostomy should be performed.

• Operative technique.
 ◦ The urethra is divided into anterior and posterior (prostatic) segments by the urogenital diaphragm.
 ♦ Anterior urethral injuries may result from blunt trauma, such as results from falls when astride an object (straddle) or from penetrating injuries.
 ◦ Blunt trauma resulting in minor nondisruptive urethral injuries may be managed by gentle insertion of a 16 Fr Foley catheter for 7–10 days.
 ◦ Penetrating wounds should be managed by exploration and judicious debridement.
 ■ Small, clean lacerations may be repaired primarily by reapproximation of the urethral edges using interrupted 4-0 chromic suture.
 ■ Do not mobilize the entire urethra for a primary anastomosis, because the shortened urethral length in the pendulous urethra may produce ventral chordee and an anastomosis under tension.
 ■ Instead, marsupialize the injured urethral segment by suturing the skin edges to the cut edges of the urethra. Marsupialization should be performed until healthy urethra is encountered both proximally and distally. Closure of the marsupialized urethra is subsequently performed at 6 months to reestablish urethral continuity.
Posterior urethral disruption commonly occurs following pelvic fracture injuries.

- Rectal examination reveals the prostate to have been avulsed at the apex.
- Improved continence and potency rates are attained when suprapubic tube cystostomy is used as the initial management.
- Suprapubic urinary diversion is maintained for 10–14 days, and urethral integrity is confirmed radiographically prior to removal of the suprapubic tube.
- With expectant observation, virtually all these injuries will heal with an obliteratorive prostatomembranous urethral stricture, which can be repaired secondarily in 3–6 months after reabsorption of the pelvic hematoma.
- Initial exploration of the pelvic hematoma is strictly reserved for patients with concomitant bladder neck or rectal injury.

External Genitalia Injuries

(See Chapter 19, Gynecological Trauma and Emergencies)

Management of wounds to the penis, scrotum, testes, or spermatic cord should be as conservative as possible, and consists of hemorrhage control, debridement, and early repair to prevent deformity.

- Injuries to the penis that disrupt Buck’s fascia should be sutured to prevent further bleeding and avoid future penile curvature with erection. When extensive penile skin is lost, then cover exposed corpora with remaining skin and sterile moist dressing.
- The scrotum is highly vascularized, and extensive debridement is usually not necessary for scrotal wounds.
 - Most penetrating scrotal injuries should be explored to evaluate the testicle for injury and reduce the risk of hematoma formation.
 - Most partial scrotal avulsions are best treated by primary closure with absorbable 3-0 sutures in two layers.
 - Primary closure is selected for patients without associated life-threatening injuries who sustained injury less than 8 hours prior. A Penrose drain or small closed drain can be placed to reduce hematoma formation.
- It is essential, when dealing with testicular wounds, to conserve as much tissue as possible.
 - Herniated parenchymal tissues should be debrided, and the tunica albuginea closed by absorbable mattress sutures.
 - The testicle is placed in the scrotum or wrapped in moist gauze.
 - A testicle should never be resected unless it is hopelessly damaged
and its blood supply destroyed.

For Clinical Practice Guidelines, go to
Chapter 19
Gynecological Trauma and Emergencies

Introduction
The current active duty population consists of 14% women, many of whom are subject to the same risks of combat injury as their male colleagues. This chapter deals with OB/GYN emergencies that may present to a deployed medical treatment facility, particularly in military operations other than war.

Gynecological Trauma

Vulva
- Vulvar injuries include lacerations and hematomas.
 - **Lacerations** that are superficial, clean, and less than 6 hours old can be primarily closed with absorbable suture. Debridement of obviously devitalized tissue is recommended.
 - ♦ Deep lacerations should be examined and explored to rule out urethral, anal, rectal mucosa, or periclitoral injuries.
 - ♦ Placing a urethral catheter will assist in determining injury. If found, single-layer closure with fine (4-0 or smaller), absorbable sutures, leaving the catheter in place, is recommended. Rectal and periclitoral injuries are closed in a similar fashion.
 - ♦ Anal lacerations should be repaired by approximating the cut ends of the anal sphincter with size 0 or 1 absorbable suture. Consideration for diversion of fecal stream should be included in the setting of anorectal injury.
 - ♦ Antibiotics (second-generation cephalosporin) are recommended with contaminated wounds.

- Vulvar trauma may cause **infrafascial** (below the pelvic diaphragm) **hematoma**.
 - ♦ Because the deeper layer of subcutaneous vulvar fascia is not attached anteriorly to the pubic rami, hematoma can spread freely into the anterior abdominal wall.
 - ♦ **Most vulvar hematomas are treated conservatively.**
 - ♦ **External compression** and ice packs should be applied until hemostasis is ensured by serial examination of the vulva, vagina, and rectum.
Hematoma may preclude adequate urination, and an indwelling catheter may need to be placed.

Large hematomas may need to be incised and bleeding vessels ligated (usually venous) to avoid skin necrosis.

Signs of shock in association with a decreasing hematocrit should prompt consideration of an extraperitoneal expansion. Ultrasound or CT is useful for detecting extraperitoneal expansion not diagnosed by clinical exam.

Vagina

- Trauma to the vagina can cause lacerations, and less commonly, suprafascial (above the pelvic diaphragm) hematoma.
- Vaginal trauma has been reported in approximately 3.5% of women with traumatic pelvic fractures. Concomitant urological trauma, most often involving the bladder and/or urethra, has been described in about 30% of patients with vaginal trauma.
- Thorough inspection and palpation of the vagina and rectovaginal exam are necessary to detect vaginal trauma and to determine the need for further urological evaluation/imaging. Due to pelvic instability (in fracture cases) or pain, examination under sedation or anesthesia may be necessary.
- Patients with vaginal lacerations typically present with bleeding, sometimes profusely, from the well-vascularized vagina.
- Lacerations are repaired using the guidelines given previously for vulvar lacerations.
- Vaginal hematoma is usually accompanied by severe rectal pressure and is diagnosed by palpation of a firm, tender mass bulging into the lateral vagina. Vaginal hematoma should be treated by incision, evacuation, ligation, and packing.
- Unrecognized vaginal trauma can result in dyspareunia, pelvic abscess, and fistula formation.

Uterus/Cervix

- Trauma to the uterus and cervix is most commonly found in association with pregnancy, but may be seen as a result of penetrating vaginal or abdominal trauma.
- Noninfected simple cervical lacerations should be repaired to optimize restoration of normal anatomy (and possibly decrease the risk of cervical incompetence or stenosis with dysmenorrhea from poor healing). Absorbable size 0 grade suture can be used.
- Acute penetrating trauma involving the uterine fundus usually causes little bleeding and can be managed expectantly without repair. Damage to the uterine wall with bleeding can be repaired with size 0 absorbable suture.
- Trauma involving the lateral wall of the uterus may cause significant bleeding, but can usually be controlled by successive ligation of the ascending and descending branches of the uterine artery as described in the
obstetrical section Uterine Atony.

Hemorrhage not responding to ligation, or extensive mutilating damage to the cervix or uterus, should be treated by hysterectomy.

- Prophylactic antibiotics should be given.

Adnexa
 - Fallopian tubes.
 - Damage to the wall of the fallopian tube by ruptured ectopic pregnancy or penetrating abdominal trauma should be treated by salpingectomy, if there is significant damage to the tube, due to the risk of subsequent or recurrent ectopic pregnancy if left in situ. If the damage is equivalent to a linear salpingotomy, achieve hemostasis, then allow healing by secondary intention.
 - The mesosalpinx is ligated or cauterized, then the tube is ligated and cut at its connection with the uterine fundus.

Basic Steps for Performing an Emergent Total Abdominal Hysterectomy

- Ligate/cauterize round ligaments (Fig. 19-1).
- Incise anterior leaves of broad ligaments bilaterally, then continue across the midline to incise the vesicouterine fold.
- Mobilize bladder downward by blunt dissection (and sharp dissection if necessary) from the lower uterine segment and cervix.*
- To retain adnexa, clamp/cut/ligate utero-ovarian ligaments and fallopian tubes near their connections to the uterine fundus (Fig. 19-2).
- Adnexa should be retained unless there is an indication for removal.
- To remove adnexa with the uterus, clamp/cut/ligate infundibulopelvic ligaments after making windows in the posterior leaves of the broad ligaments above the ureters.
- Incise posterior peritoneum to mobilize adnexa either away from (if being retained) or toward (if being removed) the uterus.
- Incise peritoneum overlying rectovaginal space, then mobilize rectum downward and away from the posterior vagina by blunt dissection (Fig. 19-3).*
- Clamp/cut/ligate uterine arteries along the lateral surface of the uterus at the uterocervical junction, staying within 1 cm of the uterus to avoid damaging ureters.
- Clamp/cut/ligate the remainder of the cardinal ligaments, paracervical tissue, and uterosacral ligaments by taking successive inferior bites until the cervicovaginal junction is
reached; each bite should be placed medial to the previous bite to avoid injuring the ureter and bladder.
- Cross-clamp the vagina below the cervix.
- Transect vagina, removing uterus (and attached adnexa, if applicable).
- Suture vaginal cuff closed, ensuring that the bladder is not incorporated.

*In case of dense adhesions between the cervix and bladder or rectum in an emergent setting, or ongoing hemorrhage with poor visualization, supracervical hysterectomy can be performed. After mobilizing the bladder and rectum from the uterus and ligating uterine arteries, the uterine fundus is transected from the cervix with a knife. The cervix is then oversewn with a baseball stitch, staying medial to the ligated uterine arteries.

![Abdominal hysterectomy](image)

Fig. 19-1. Abdominal hysterectomy—anterior view.

- Unruptured ampullary/isthmic ectopic pregnancy can be treated by linear salpingotomy, with extraction of the ectopic gestation. The tubal incision is left open to heal by secondary intention.
- An unruptured or ruptured corneal/interstitial ectopic pregnancy requires wedge resection of the uterine cornu with salpingectomy.
- An ectopic pregnancy spontaneously aborted into the abdominal cavity through the end of the tube should be removed, but the tube may be left in situ if hemostasis is attained.

- **Ovaries.**
A ruptured ovarian cyst should be treated via cystectomy by shelling the cyst wall out of the ovary, then cauterizing or ligating any bleeding vessels, usually at the base of the cyst.

Torsion of an ovarian mass is first treated by assessing the ovary. Untwist the ovary and or fallopian tube. If it appears healthy, with some continuing blood supply, it can be left in situ. If the ovary contains a large (>4 cm), simple-appearing cyst, the cyst can be drained and the cyst wall removed. Interrupted sutures using a fine monofilament or electrocautery can be used to obtain hemostasis. If the ovary appears dark and dusky after untwisting, perform a salpingo-oophorectomy by ligating the infundibulopelvic ligament first (after identifying the ureter), then the utero-ovarian ligament and fallopian tube.

Hemorrhage from an infundibulopelvic ligament, as a result of penetrating abdominal trauma, is best treated by ligation with salpingo-oophorectomy.

Retroperitoneal Hematoma
- Laceration of an arterial branch of the hypogastric artery can cause a
retroperitoneal hematoma.
- A large amount of blood may collect in the broad ligament with few symptoms. Dissection of the hematoma can extend up to the level of the renal vessels. The hematoma may be discovered during emergency surgery for trauma or during reoperation or postpelvic surgery, or suspected by signs of shock suggesting internal bleeding.
- Retroperitoneal hematoma can be treated by hypogastric artery ligation on the affected side. **Bilateral hypogastric artery ligation may be necessary for hemostasis.** The uterus, tubes, and ovaries may be left in situ if viable and without other indication for removal.

Gynecological/Obstetrical Emergencies
- **Acute vaginal hemorrhage unrelated to trauma.**
 - Bright red vaginal bleeding filling more than one large perineal pad per hour is considered vaginal hemorrhage. A pregnancy test and pelvic exam direct initial therapy.
 - **If the patient is not pregnant,** hormonal management with 25 mg IV PREMARIN or 50 µg estrogen-containing oral birth control pills should be given every 6 hours.
 - If bleeding responds to hormonal management, oral birth control pills should be continued qid for 5–7 days, while more definitive diagnosis and management plans are made.
 - If bleeding has not decreased significantly within 24 hours, dilatation and curettage are reasonable. If heavy bleeding continues, imaging studies and possibly coagulation studies will be needed to help direct further therapy.
 - **In the pregnant patient,** heavy bleeding from the cervical os with uterine size <20 weeks (fundus at/or below the level of patient’s umbilicus) suggests spontaneous abortion. Dilatation and suction curettage should be performed.
 - Ectopic pregnancy uncommonly presents with acute hemorrhage, but should be considered if the patient has an acute abdomen or if scant tissue is obtained on curettage.
 - In a pregnant patient with uterine size consistent with a third trimester gestation (>4 cm above the umbilicus in a singleton pregnancy), vaginal hemorrhage is usually an indication of placental abruption or placenta previa.
 - Emergent cesarean section will be necessary if the uterine hemorrhage does not spontaneously resolve within several minutes.
 - After delivery of the fetus and placenta, persistent hemorrhage
unresponsive to more conservative measures may require hysterectomy (see Emergency Cesarean Section and Uterine Atony).

◊ Pregnant patients (mothers) with acute vaginal hemorrhage who have Rh– blood type, or if their Rh status is unknown, should be given RhoGAM 300 µg IM.

◊ A hemorrhaging mass in the vagina is most likely cervical cancer. The vagina should be packed to tamponade the bleeding after placing a urethral catheter. Placing sutures is generally futile and may make the bleeding worse.

Precipitous Vaginal Delivery

• Preparation.
 ◦ Supplies needed for the delivery, include povidone-iodine sponges, a 10-cc syringe, lidocaine, two Kelly clamps, ring forceps, dry towels, a bulb syringe, and scissors.
 ◦ The mother should be placed on her left side for labor.
 ◦ The fetal heart rate should be determined every 15 minutes prior to pushing and following each contraction during the pushing phase using a vascular Doppler. **Normal fetal heart rate is between 120–160 beats per minute.** The heart rate often drops with the contraction, but should recover to normal prior to the next contraction.

If the fetal heart rate drops below 100 and stays low for more than 2 minutes, a cesarean section should be considered.

◊ When the patient presents, the cervix should be examined to determine dilation and fetal position. For the woman to begin pushing, the cervix should be completely dilated (10 cm), and no cervix should be felt on either side of the fetal head. If the baby’s head is not presenting, move to cesarean section immediately. If there is any question, and ultrasound is available, it should be used to determine the presentation.

• Delivery.
 ◦ Once the patient begins pushing, flex the hips to optimally open the pelvis. The patient may be on her back or tilted slightly to the left. Assistants should support the legs during pushing and relax them between contractions.
 ◦ Clean the perineum with sterile Betadine solution. If this is the patient’s first delivery, the perineum should be anesthetized with lidocaine in case an episiotomy is needed. There is little support for prophylactic episiotomy, but may be necessary if the fetus is large or tearing is anticipated.
 ◦ The fetal head delivers by extension. Pushing upward on the fetal chin through the perineum can assist this process. Additionally, it is
extremely important to control the rate of delivery of the head with the opposite hand.

- If an episiotomy is needed, it should be cut in the posterior midline from the vaginal opening approximately ½ the length of the perineum and extend about 2–3 cm into the vagina.
- After delivery of the head, the mouth and nose should be suctioned and the neck palpated for evidence of a nuchal cord. If present, this should be reduced by looping it over the fetal head, or by clamping twice and cutting if it will not reduce.
- Next, the operator’s hands are placed along the parietal bones, and the patient is asked to push again to allow delivery of the anterior shoulder. Gentle downward traction should allow the shoulder to clear the pubis, and the fetus should be directed anteriorly to allow delivery of the posterior shoulder. The remainder of the body will normally follow rapidly. Wrap infant in dry towels.
- Once the fetus delivers, the cord should be doubly clamped and cut. The placenta usually delivers within 15 minutes of delivery, but may take up to 60 minutes. Delivery of the placenta is heralded by uterine fundal elevation, lengthening of the cord, and a gush of blood. While waiting, gentle pressure may be placed on the cord; however, vigorous uterine massage and excessive traction can lead to complications.
- Following delivery of the placenta, the patient should be started on an infusion of lactated Ringer’s with 20 units of oxytocin (Pitocin). Oxytocin can also be given IM if there is no IV access. If there is no oxytocin available, alternatives are administering methylergonovine maleate (Methergine) 0.2 mg IM or allowing the patient to breastfeed the infant. The placenta should be inspected for evidence of fragmentation that can indicate retained products of conception.

Inspection and repair.

- Following delivery of the placenta, the vagina and cervix should be inspected for lacerations. Downward digital pressure on the posterior vagina and fundal pressure (by an assistant, if available) will facilitate visualization of the cervix. A ring forceps is then used to grasp and visualize the entire cervix.
- The vagina should be inspected, with special attention to the posterior fornix. The perineum and periurethral areas should also be inspected. Vaginal and cervical lacerations may be repaired with 3-0 VICRYL or an equivalent suture in running or interrupted layers.
- If the anal sphincter is lacerated, it should be reapproximated with 2-0 absorbable interrupted single or figure-of-eight sutures.
- If the tear involves the rectum, the rectal-vaginal septum should be repaired with interrupted sutures of 3-0 VICRYL. A second layer imbricating the underlying tissue will decrease the risk of breakdown. Care should be taken to preserve aseptic technique. If a large tear is
noted, a saddle block or spinal anesthetic may be necessary.
- Patients with a periurethral tear may require urethral catheterization. In addition to lacerations, hematoma in the vulva, vagina, or retroperitoneum may occur. See Gynecological Trauma for management.

Emergency Cesarean Section

- **Indications.**
 - Fetal heart rate drops below 100 and stays down for more than 2 minutes.
 - Acute uterine hemorrhage persisting for more than a few minutes (suggestive of placental abruption or previa).
 - Breech or transverse fetal presentation.
- The patient should be placed in the left tilt position with an IV bag or towel displacing the uterus to the left. She should undergo a quick prep from just below the breasts to the midthigh. A major abdominal equipment set should have most of the instruments that you will need.

- **Basic steps to performing an emergency C-section** (Fig. 19-4).
 - Enter the abdomen through the lower midline.
 - Identify and incise the peritoneal reflection of the bladder transversely and create a bladder flap to retract the bladder out of the field.
 - Using a scalpel, carefully incise the uterus transversely across the lower uterine segment (where the uterine wall thins).
 - Once the amniotic membranes are visible or opened, extend the incision laterally, either bluntly or by carefully using bandage scissors. **Avoid the uterine vessels laterally.** If necessary, the incision can be extended at one or both of its lateral margins in a J-fashion by vertical incision.
 - Elevate the presenting fetal part into the incision, with an assistant providing fundal pressure.
 - Upon delivery of the fetus, suction the nose and mouth and clamp and cut the cord. Hand the infant off for care.
 - Direct the anesthetist to administer 2 grams of Cefazolin (ANCEF) once the cord is clamped.
 - Allow the placenta to deliver by providing gentle traction on the cord and performing uterine massage.
 - Begin oxytocin, if available, as previously described.
 - Using a sponge, clean the inside of the uterus, and vigorously massage the fundus to help the uterus contract.
 - Quickly close the incision with 0 VICRYL. A single layer (running, locking) is adequate, if hemostatic, for transverse incisions. Take care to avoid the lateral vessels. If the incision has a vertical extension, close it in two or three layers.
 - Once hemostasis is ensured, close the fascia and abdomen in the usual fashion.
In the rare case of continued uterine hemorrhage, evaluate and treat as outlined in Uterine Atony.

Uterine Atony

- The majority of postpartum hemorrhage is secondary to uterine atony (failure of uterine contracture).

When the uterus fails to contract following delivery of the placenta, bleeding may be torrential and fatal.

- Initial management should include manual uterine exploration for retained placenta. Without anesthesia, this procedure is painful. An opened sponge is placed around the examiner’s fingers. Place the opposite hand on the patient’s uterine fundus and apply downward pressure. Gently guide your fingers through the open cervix and palpate for retained placenta. The inside of the uterus should feel smooth, and the retained placenta will feel like a soft mass of tissue. This may be removed manually or by using a large curette if available.
If no tissue is encountered, use both hands to apply vigorous uterine massage to improve the uterine tone.

Medications should also be used if available. Oxytocin may be given by IV bolus using 40 units in 1,000 cc, or up to 10 units IM, but never by IV push. Although unlikely to be available, other medications that can be considered are Methergine, Dinoprostone (Prostin), and Misoprostol (Cytotec).

If no medication is available, the patient should be encouraged to breastfeed the infant or to do nipple stimulation to increase endogenous oxytocin release.

If conservative measures fail to arrest the postpartum hemorrhage, laparotomy (if the hemorrhage is occurring postvaginal delivery) should be performed.

Intraoperative massage of the uterine fundus may be tried. If the massage fails to improve uterine tone, the uterine arteries should be ligated in a stepwise fashion. Begin with the ascending branch at the junction of the upper and lower uterine segment. Using 0 or no. 1 chromic, place a stitch through the myometrium medial to the artery from front to back. The stitch is then brought out through the adjacent broad ligament and tied. If bilateral ligation of the ascending branch does not control bleeding, the descending branch should be ligated at the level of the uterosacral ligament. If this fails, consider bilateral hypogastric artery ligation. If this fails, proceed to hysterectomy as outlined in the gynecological portion of this chapter.

Neonatal Resuscitation

Immediately following delivery, every infant should be assessed for need for resuscitation. Equipment that may be needed includes warm towels, bulb syringe, stethoscope, flow-inflating or self-inflating bag with oxygen source, laryngoscope and blade, suction catheter, and endotracheal tube. The two medications that may be needed are epinephrine 1:10,000 and Naloxone (Narcan) 0.4 mg/mL.

Nearly 90% of term babies are delivered without risk factors and with clear fluid, requiring that they only be dried, suctioned, and observed.

If the baby is <36 weeks, or if there is meconium in the fluid at delivery, the baby will need to be observed more closely.

- In the first 30 seconds after delivery, dry and stimulate the baby, position it to open the airway, and give free flow oxygen if the color is poor.
- At 30 seconds, evaluate the heart rate. If it is <100, begin to provide positive pressure ventilation. After 30 seconds of ventilation, recheck the heart rate. If it is <60, then chest compressions should be started. After 30 seconds of chest compressions, again reevaluate. If the heart rate remains <60, you should administer epinephrine. Epinephrine can
be given either through the umbilical vein or the endotracheal tube. The level of experience of the team present should dictate which route should be used. The dose is 0.1–0.3 mL/kg of the 1:10,000 solution.

- If the heart rate rises over 100, stop the positive pressure ventilations, but continue to provide free flow oxygen. If the mother has been given a dose of narcotics in the 4 hours prior to delivery, and positive pressure ventilation has resulted in a normal heart rate and color but poor respiratory effort, then Naloxone is indicated. Administer Naloxone by IV, IM, or endotracheal route at a dosage of 0.1 mg/kg.

- If at any time during resuscitation the heart rate goes above 100—with good respiratory effort, tone, and color—the baby may be moved to observation status.

For Clinical Practice Guidelines, go to
Chapter 20

Wounds and Injuries of the Spinal Column and Cord

Introduction

Combat injuries of the spinal column, with or without associated spinal cord injury, differ from those encountered in civilian practice. These injuries are often open, contaminated, and usually associated with other organ injuries.

Following the ABCs (airway, breathing, circulation) of Advanced Trauma Life Support, management principles include:

- Initial spine stabilization to prevent neurological deterioration.
- Diagnosis.
- Definitive spinal stabilization.
- Functional recovery.

In complete injuries, the likelihood of neurological recovery is minimal and is not influenced by emergent surgical intervention. Incomplete injuries with neurological deterioration, however, may benefit from emergent surgical decompression. One must assume, until spinal shock has abated, that patients with a significant spinal column injury have the potential for a concomitant neurological deficit, and should be treated and transported accordingly.

Classification

Four discriminators must be considered in the classification and treatment of spinal injuries.

- Is the injury open or closed?
- Neurological status: complete vs incomplete vs intact.
 - Complete injury demonstrates no neurological function below the level of injury after the period of spinal shock (usually 48–72 hours, evidenced by the return of the bulbocavernosus reflex).
- Location of the injury: cervical, thoracic, lumbar, or sacral.
- Degree of bony and ligamentous disruption: stable vs unstable.

Pathophysiology of Injury to the Spinal Cord

- Injury to the spinal cord is the result of both primary and secondary mechanisms.
 - Primary: The initial mechanical injury due to local deformation and energy transmission (primary injury cascade). This phase of the injury
is most often unpreventable.

- High-velocity missile wounds in the paravertebral area can cause injuries even without direct trauma. Stretching of the tissue around the missile’s path during formation of the temporary cavity, or fragmentation of the projectile and bone resulting in secondary missiles, causes injury without any direct destruction of the spinal column.

The destructive nature of high-velocity wounds explains the futility of decompressive laminectomy in the management of these wounds.

- **SECONDARY:** The cascade of biochemical and cellular processes initiated by the primary process that causes cellular damage and even cell death (secondary injury cascade).

Critical care of spinal cord injury patients includes attempts to minimize secondary injury from hypoxia, hypotension, hyperthermia, and edema.

Mechanical Integrity of the Vertebral Column

The vertebral column is composed of three structural columns (Table 20-1):

- Anterior.
- Middle.
- Posterior.

Table 20-1. Support of the Spinal Column

<table>
<thead>
<tr>
<th>Column</th>
<th>Bony Elements</th>
<th>Soft-Tissue Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Anterior two-thirds of vertebral body</td>
<td>Anterior longitudinal ligament</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anterior annulus fibrosus</td>
</tr>
<tr>
<td>Middle</td>
<td>Posterior one-third of vertebral body</td>
<td>Posterior longitudinal ligament</td>
</tr>
<tr>
<td></td>
<td>Pedicles</td>
<td>Posterior annulus fibrosus</td>
</tr>
<tr>
<td>Posterior</td>
<td>Lamina</td>
<td>Ligamentum flavum</td>
</tr>
<tr>
<td></td>
<td>Spinous processes</td>
<td>Interspinous ligaments</td>
</tr>
<tr>
<td></td>
<td>Facet joints</td>
<td></td>
</tr>
</tbody>
</table>

- Injuries occur by either direct penetrating forces or a combination of flexion, axial loading, rotation, and distraction forces.
- **Instability may occur from either blunt injury of the vertebral column or gunshot/fragmentation wounds. The incidence of instability is significantly higher in explosion-related injuries.**
- Cervical instability by lateral radiograph (must include the C7/T1 junction)
is suggested by:
- 3.5 mm or greater sagittal displacement or translation.
- Angulation of 11° or more on the lateral view.
- The accuracy and, therefore, the role of flexion and extension lateral radiographs to assess for cervical stability are limited in the acute injury setting. If cervical stability remains in question following initial assessment, the safest course of action is to provide external cervical immobilization until stability can be definitively established.

CT is very effective in demonstrating spinal morphology and has become available in some field environments.

<table>
<thead>
<tr>
<th>Instability must be presumed (and the spine stabilized) in any patient with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Complaints of a sense of instability (holds head in hands).</td>
</tr>
<tr>
<td>- Vertebral column pain.</td>
</tr>
<tr>
<td>- Tenderness in the midline over the spinous processes.</td>
</tr>
<tr>
<td>- Neurological deficit.</td>
</tr>
<tr>
<td>- Altered mental status.</td>
</tr>
<tr>
<td>- SUSPECTED, but NOT PROVEN, injury.</td>
</tr>
</tbody>
</table>

Patient Transport

On the battlefield, preservation of the life of the casualty and medic is of paramount importance. In these circumstances, EVACUATION TO A MORE SECURE AREA TAKES PRECEDENCE OVER SPINE IMMOBILIZATION. Data do not support the use of cervical collars and spine boards for PENETRATING spine injuries on the battlefield.

Extrication

- Cervical spine.
 - The neck should never be hyperextended.
 - If an airway is needed.
 - If appropriate, attempt endotracheal intubation with in-line neck stabilization.
 - Cricothyroidotomy may be necessary if intubation fails.
 - The head should be maintained in alignment with the body.
 - Requires several people, including one designated to stabilize the neck.
 - Log roll, with the most experienced person stabilizing the neck.
 - A stiff cervical collar and sandbags provide stabilization of the neck during transport. The head and body should be secured to the extrication device.
- Thoracic and lumbar spine.
 - Use the log roll or two-man carry.
The two-man carry alone does not protect the cervical spine. Ensure C-spine protection.

- In the absence of a spine board, makeshift litters can be fashioned from local materials.

Anatomical Considerations

Cervical Spine

All potentially unstable cervical spine injuries should be immobilized in a cervical collar, unless halo immobilization is required. However, halo devices should not be placed until the patient is evacuated to a theater asset where a neurosurgeon or orthopaedic spine surgeon is available for halo placement and reduction of these injuries.

- **Indications for halo use:**
 - The role of halo immobilization in the acute combat setting is quite limited. In nonpenetrating trauma to the cervical spine, immobilization with a cervical collar or sandbags is preferable until arrival at a definitive treatment site.
 - Should traction be indicated for cervical spine injuries (eg, facet joint dislocations or burst fractures with a tenuous neurological status), the Gardner-Wells tongs should be applied and sufficient weight (generally 10–20 lbs) placed in line with the spine (Fig. 20-1; Table 20-2). If traction is applied, radiographs must be obtained to be certain that no undiagnosed ligamentous injury has been exacerbated by the weight. **Do not treat injuries to the occipitocervical articulation with traction because this could result in disarticulation of the head from the cervical spine.**
 - The role of collar immobilization in penetrating injuries to the cervical spine is less well established. Soft-tissue care is compromised by the collar’s position and, in general, penetrating injuries coupled with osseous instability should be managed in Gardner-Wells traction.

Thoracic and Lumbar Spine

- Although the thoracic rib cage contributes considerable rotatory stability, it does not protect completely against injuries.
- The vascular supply of the spinal cord is most vulnerable between T4 and T6, where the canal is most narrow. Even a minor deformity may result in cord injury.
Fig. 20-1. Gardner-Wells tongs.

- The most common place for compression injuries is at the thoracolumbar junction between T10 and L2 in the civilian population. However, a very high preponderance of low lumbar burst fractures (L3 and below) occurs in the military population. These injuries are quite distinct in that the pelvic brim connotes “inherent” stability for these fractures.
- Most burst fractures result from an axial load and occur at the thoracolumbar junction. These fractures are associated with compromise of the spinal canal and progressive angular deformity. They are often associated with significant neurological injury.
- Evaluation for surgical stabilization and spinal cord decompression should be done with advanced imaging, such as CT and/or MRI.

Table 20-2. Application of Gardner-Wells Tongs

<table>
<thead>
<tr>
<th>Steps</th>
<th>Procedure</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspect Insertion Site:</td>
<td>1 cm superior to pin in line with the external auditory meatus.</td>
<td>Rule out depressed skull fracture in this area.</td>
</tr>
<tr>
<td>Shave and Prep</td>
<td>Pin Insertion Site</td>
<td></td>
</tr>
<tr>
<td>Inject Local Anesthetic:</td>
<td>Inject 2–3 cc of 1%</td>
<td></td>
</tr>
</tbody>
</table>

When complex wounds involving the head, thorax, abdomen, or extremities coexist with vertebral column injuries, lifesaving measures take precedence over the definitive diagnosis and management of spinal column and cord problems. During these interventions, further injury to the unstable spine must be prevented by appropriate protective measures.
Xylocaine or equivalent agent 1 cm above each ear in line with the external auditory meatus. May omit if patient is unconscious.

Advance Gardner-Wells Tong Pins:
Insert pins into skull by symmetrically tightening the knobs. A spring-loaded device in one of the two pins will protrude when the pins are appropriately seated. (A data plate on the tongs provides additional information.)

Apply Skeletal Traction:
Use a pulley fixed to the head of the litter or frame to direct horizontal traction to the tongs. Use the 5-lb rule (ie, 5 lbs of weight for each level of injury). High cervical fractures usually require minimal traction to reduce. Monitor with series radiographs. The tong-pin site requires anterior or posterior positioning to adjust for cervical spine flexing or extension as indicated.

Elevate Head of Litter:
Use blocks to provide body weight counter traction. The knot in the cord should not be permitted to drift up against the pulley. Should this occur, traction is no longer being applied.

Decrease Traction Weight:
When radiographs confirm that reduction is adequate, decrease traction to 5–15 lbs. Unreducible or unstable fractures should be maintained in moderate traction until surgical intervention. If neurological deterioration occurs, immediate surgical intervention must be considered.

Daily Pin Care
Cleanse tracts with saline and apply antibiotic ointment to the pin sites. Maintain pin force (see step 4) by tightening as necessary to keep spring-loaded device in the protruded position.

Turn Patient Appropriately:
Use Stryker, Foster, or similar frame and turn patient every 4 hours. When initially proned, obtain radiographs to ensure that the reduction is maintained. If reduction is not maintained when the patient is proned, rotate the patient only between the 30° right and left quarter positions. Use of a circle electric bed is contraindicated with injuries of the spinal cord or column.

If Satisfactory Alignment Cannot Be Obtained, Further Workup Is Necessary
Consider myelogram, CT scan, tomograms, and neurosurgical/orthopaedic consultations.

Emergent Surgery

Emergent spine surgery for penetrating or closed injuries of the spinal cord is indicated only in the presence of neurological deterioration.

- Penetrating spine injuries.
 - Injuries associated with a hollow viscus should undergo appropriate
treatment of the viscus injury without extensive debridement of the spinal injury, followed by appropriate broad-spectrum antibiotics for 1–2 weeks. Inadequate debridement and irrigation may lead to meningitis.

- Removal of a fragment from the spinal canal is indicated for patients with neurological deterioration.
- In neurologically stable patients with fragments in the cervical canal, delaying surgery for 7–10 days reduces problems with dural leak and makes dural repair more straightforward.
- Casualties not requiring immediate surgery may be observed with spine immobilization and treated with 3 days of IV antibiotics. Surgical stabilization can be performed following evacuation.

General Management Considerations

Neurogenic Shock
- Traumatically induced sympathectomy with spinal cord injury.
- Symptoms include bradycardia and hypotension.
- Treatment:
 - Volume resuscitation to maintain systolic blood pressure >90 mm Hg.
 - May use phenylephrine (50–300 µg/min) or dopamine (2–10 µg/kg/min) to maintain blood pressure. (First treat with fluid resuscitation and oxygen before starting pressor support.)

Gastrointestinal Tract
- Ileus is common and requires use of a nasogastric tube.
- Stress ulcer prevention using medical prophylaxis.
- Bowel training includes a schedule of suppositories and may be initiated within 1 week of injury.

Deep Vein Thrombosis
- Start mechanical prophylaxis immediately.
- Initiate chemical prophylaxis after acute bleeding has stopped (see Chapter 11, Critical Care).

Bladder Dysfunction
- Failure to decompress the bladder may lead to autonomic dysreflexia and a hypertensive crisis.
- The bladder is emptied by intermittent or indwelling catheterization.
- Antibiotic prophylaxis for the urinary tract is not advised.

Decubitus Ulcers
- Skin breakdown begins within 30 minutes in the immobilized hypotensive patient.
 - For prolonged transport, the casualty should be removed from the hard spine board and placed on a litter.
 - Frequent turning and padding of prominences and diligence on the part of
caretakers are essential to protect the insensate limbs.

- All bony prominences are inspected daily.
- Physical therapy is started early to maintain range of motion in all joints to make seating and perineal care easier.

For Clinical Practice Guidelines, go to
Chapter 21

Pelvic Injuries

Introduction

- Injuries of the pelvis are an uncommon, but potentially lethal battlefield injury.
- Blunt injuries may be associated with major hemorrhage and early mortality. Death within the first 24 hours of injury in these patients is most often due to hemorrhage. Civilian mortality rates have ranged from 18% to 40%.
- Penetrating injuries to the skeletal pelvis are usually associated with abdominopelvic organ injury.
- Key issues in the management of pelvic fractures are to identify if the patient is hemodynamically stable and if the pelvic fracture is mechanically stable.
 - If the patient is not hemodynamically stable, it is imperative to identify all sites of hemorrhage, because pelvic fractures often occur in conjunction with other life-threatening injuries.
 - Appropriate evaluation of the abdomen, chest, and other potential sites of injury and hemorrhage cannot be overstressed.
- Additionally, a thorough examination of the pelvis and perineum is required to rule out associated injuries to the rectum and genitourinary/gynecological systems, which may render the fracture open.
- Open injuries require early recognition and prompt treatment to prevent high mortality due to early hemorrhage and late sepsis. The mortality rate of open pelvic fractures is >50%.

Diagnosis.

- Leg-length discrepancy, scrotal or labial swelling/ecchymosis, or abrasions over the pelvis raise suspicion for pelvic ring injury.
- The perineum, rectum, and vaginal vault must be evaluated for lacerations to rule out an open injury.
- Assess pelvic stability by applying a posteriorly directed force to the iliac crests at the level of the anterior superior iliac spine. If the symphysis opens >2.5 cm, or the hemipelvis shifts posteriorly, the pelvis is unstable. This examination should be completed only once by the most experienced provider available, because additional manipulation can exacerbate hemorrhaging.

Bladder and urethral injuries are suspected when blood is present at
the meatus or in the urine, or when a Foley catheter cannot be passed. Retrograde urethrogram and cystography confirm the diagnosis.

- Radiographs (anterior-posterior pelvis and, when possible, inlet and outlet views) confirm the diagnosis. CT defines the location and extent of injury more accurately, but is not necessary in the immediate evaluation of these patients.

Blunt Injuries

- Patterns and mechanisms are the same as those seen in civilian blunt trauma.
 - Lateral compression injuries are marked by internal rotation or midline displacement of the hemipelvis. By definition, these injuries maintain an intact pelvic floor and are at least partially stable. Radiographic hallmarks include oblique ramus fractures anteriorly and vertically congruent sacroiliac joints posteriorly. Closed-head injuries are associated with this mechanism. Generally, these injuries infrequently require significant transfusion.
 - Vertical shear injuries have cephalad displacement of the hemipelvis and are mechanically unstable. Radiographic hallmarks include a widened symphysis or vertical ramus fractures anteriorly and a vertically disrupted sacroiliac joint posteriorly. These injuries have a high incidence of retroperitoneal hematoma formation and consumptive coagulopathy. These injuries have a predilection for hemorrhage and may require significant transfusion of blood and blood products for resuscitation.
 - Anterior-posterior (open book) injuries demonstrate external rotation of the hemipelvis. Radiographic hallmarks include a widened symphysis or vertical ramus fractures anteriorly and wide but vertically congruent sacroiliac joint(s) posteriorly. These injuries are associated with hollow viscus and solid organ injury and life-threatening hemorrhage. These injuries have a predilection for hemorrhage and may require significant transfusion of blood and blood products for resuscitation.

- Combined mechanisms can occur.
 - Increasing degrees of displacement in any direction are associated with greater risk of hemorrhage.
 - Anterior-posterior injuries with complete disruption of all sacroiliac ligaments represent an internal hemipelvectomy and have the greatest potential for hemorrhage.

Immediate pelvic stabilization (pelvic binders, sheets, external fixation, C-clamp) can control hemorrhage and reduce mortality. This is particularly true in an austere environment with limited blood replacement products and other treatment resources.
• **Treatment.**
 ◦ Hemorrhage control.
 ♦ When pelvic fractures cause hemorrhage, the bleeding occurs from three major sources: arterial, venous, and cancellous bone. More than 70% of the hemorrhage associated with blunt pelvic trauma causing pelvic fracture is venous, and may be controlled with maneuvers that reduce the pelvic volume and stabilize the pelvis.
 ♦ Volume reduction/mechanical stabilization can be obtained by:
 ◈ Tying a sheet or placing a binder around the pelvis at the level of the greater trochanters.
 ◈ Manually reducing the pelvis and placing bean bags or sandbags at the level of the trochanters.
 ◈ Positioning the patient in lateral decubitus with the affected side down.
 ◈ Tying the ankles together in internal rotation provides additional volume reduction.

 Pelvic binders or sheets are the most expeditious way to control hemorrhage and provide pain relief through pelvic stabilization and reduction of intrapelvic volume. External fixators can provide longer term stabilization, but are difficult to place and have a higher incidence of complications. Skin necrosis can occur with long-term application of pelvic binders and sheets.

The other nearly 30% are associated with an arterial source and often require procedural interventions, such as surgical packing and/or embolization.

 • Angiography is a useful adjunct, but is not usually available in the deployed environment. When available, angiographic exploration with early embolization for the hemodynamically unstable patient with intrapelvic hemorrhage may be beneficial.
 • Given that this capability is rarely available outside of a Role 3 facility, the next most beneficial maneuver is retroperitoneal packing via a suprapubic incision.
 • Attempts at opening a retroperitoneal pelvic hematoma (as a result of a pelvic fracture) from inside the abdomen should be resisted at all costs and attempted only as a last resort.
 • None of these interventions should delay the necessary acute surgical treatment for concomitant hemorrhagic injuries.
 ◦ Open blunt injuries require:
 ♦ Immediate hemorrhage control by packing.
 ♦ Aggressive and thorough debridement.
 ♦ Pelvic stabilization by external fixation.
Diverting colostomy in the presence of wounds at risk for fecal soilage.

- Definitive internal pelvic stabilization (plates, screws, etc) is done outside of the combat zone.

Missile and fragmentation wounds can cause pelvic fractures.

- The pelvis usually remains mechanically stable.
- The colon, small intestine, rectum, and the genitourinary tracts must all be assessed for associated injury.
- Major hemorrhage can result from injury to the iliac vessels.

Penetrating Injuries

Evaluation.

- Diagnosis of associated injuries may require exploratory laparotomy.
- Fractures should be assessed with radiographs and CT scans, when available, to rule out extension into the hip and acetabulum.

Treatment.

- Control hemorrhage and resuscitate with blood and blood products.
- Control hollow viscus injury.
- Thoroughly debride wounds and fractures.

For combined hollow viscus and acetabulum/hip joint injuries, the joint is contaminated and must be explored and treated as described in Chapter 9, Soft-Tissue and Open Joint Injuries.

Technique of sheet or pelvic binder application.

- Slide the folded sheet (30–40 cm wide) or binder under the supine patient, centered at the level of the greater trochanters.
- With a second individual on the opposite side of the table, overlap the ends of the sheet (or Velcro straps of the binder) circumferentially, applying compression across the pelvis.
- Secure the sheet in place with large Kelly clamps, or, alternatively, tighten the draw string on the binder.
- Binders can be left in place for 24–48 hours, but require frequent skin checks for longer periods of use.
- Confirm reduction of the pelvis with an anterior-posterior pelvis X-ray.

Technique of pelvic external fixator placement (Fig. 21-1).

- Prep the iliac crests.
- Place a 2-cm horizontal incision over the iliac crest, 2–3 cm posterior to the anterior-superior iliac spine.
Bluntly dissect to the iliac crest, taking care to identify the intermuscular plane between the external oblique and iliacus, which will lessen bleeding.

To determine the angle of the pelvis, first slide a guide pin between the muscle and the bone along the inner table of the iliac wing no deeper than 3–4 cm.

Failure to properly determine the angle of the iliac wing leads to inadequate fixation and may cause significant complications.

Locate the junction of the middle and medial thirds of the thickness of the iliac crest with the tip of a 5-mm external fixator pin.

Paralleling the guide pin, begin drilling the pin into the crest.

Drill between the inner and outer tables to a depth of about 4 cm, aiming generally toward the greater trochanter. Only gentle pressure should be applied once the pin threads have engaged to allow for the pin to guide itself between the tables.

A second pin is inserted 1–2 cm more posteriorly on the crest.

Check the stability of each pin. If unsatisfactory, attempt reinsertion by aiming between the tables.

Place pins in the contralateral iliac crest in the same manner.

Reduce the pelvis by applying pressure on the pelvis (not the pins!) and connect the external fixator pins with bar(s) across the abdomen and pelvis to maintain reduction.

Technique for retroperitoneal packing.

- Prep the abdomen and make an 8-cm midline incision extending proximally from the level of the symphysis pubis toward the umbilicus.
- Divide the fascia of the rectus abdominus in its midline, taking care to avoid penetrating the underlying bladder.
- Retract the bladder to one side with the use of a malleable retractor,
and identify the pelvic brim beginning at the level of the symphysis pubis and extending posteriorly.

- To the greatest extent possible, quickly identify whether the bulk of the bleeding encountered is venous or arterial in nature. If arterial, consider subsequent embolization procedures.
- Taking care to avoid disruption of anomalous vascular connections between the obturator and iliac systems (corona mortis), identify the pelvic brim and place the first of three laparotomy sponges with the aid of a sponge stick posteriorly to the level of the sacroiliac joint, below the level of the pelvic brim (true pelvis).
- A second sponge is packed at the midportion below the pelvic brim, with the third sponge placed below the bladder anteriorly into the space of Retzius.
- The bladder is retracted to the other side, and the procedure is repeated for the opposite hemipelvis.
- The rectus fascia is closed, with a single layer running suture and the skin closed with staples.
- Exploratory laparotomy, if required, should follow closure of the retroperitoneal fascia to allow for the continued tamponade of the vessels in the retroperitoneum.
- Packing should be carefully removed within 24–48 hours.

- **Technique of pelvic C-clamp placement (Fig. 21-2).** (For markedly unstable injuries—ie, internal hemipelvectomy and shock unresponsive to fluid resuscitation.)
 - Extend a line along the axis of the femur curving proximally and posteriorly above the level of the greater trochanter, along the lateral aspect of the pelvis.
 - Extend a second line perpendicular to the floor at the level of the anterior-superior iliac spine so that it intersects the first line.

Fig. 21-2. Placement of a pelvic C-clamp. Intersection of lines indicates the correct entry point.

- Prep the area and make a 2-cm incision at the intersection of the two lines above. Dissect with a blunt instrument to the level of the pelvic groove formed by angulation of the lateral cortex of the iliac wing (at the margin between the true and false pelvis).
- Insert the first pin with the disengaged arm of the C-clamp to the
groove on the uninjured side of the hemipelvis first and impact gently with a mallet.
- Engage the pin on the opposite injured side in a similar manner by sliding the arms of the clamp together. Further tightening of the threads can provide definitive compression of the posterior pelvic ring.
- Confirm reduction with an anterior-posterior pelvis X-ray.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 22

Extremity Fractures

Introduction
This chapter discusses two techniques for safe transportation of wounded service members with a long bone fracture: transportation casts and temporary external fixation. Both of these methods are acceptable for initial treatment of a casualty who will be evacuated out of theater. Precise indications for external fixator use versus casting have not been established.

Both transportation casts and external fixators are acceptable methods for the initial management of long bone fractures. In the end, the choice of initial fracture stabilization must be made on a case-by-case basis by the treating surgeon.

In general, indications for external fixator use include when the soft tissues need to be evaluated while en route, such as with a vascular injury; when other injuries make use of casting impractical, such as with a femur fracture and abdominal injury; or when the patients have extensive burns. The advantages of external fixation are that it allows for soft-tissue access, can be used for polytrauma patients, and has a minimal impact on the patient. A splint and bulky dressing may be added for better soft-tissue support.

ADVANTAGES of transportation casts are that they preserve the maximum number of surgical options, the soft tissues are well supported, and the casts are relatively low tech.

DISADVANTAGES of transportation casts are that they cover soft tissues, may not be suitable for polytrauma patients, and are more labor-intensive than external fixators.

Although standard in civilian trauma centers, intramedullary nailing of major long bone fractures is contraindicated in combat zone hospitals because of a variety of logistical and physiological constraints. This method may be used once a patient reaches Role 4 or other site where more definitive care can be provided. Intramedullary nailing has been performed successfully at Role 3 facilities on local nationals after appropriate initial damage control surgeries. However, this is an exception. Literature supporting this practice has very short follow-up with low patient follow-up. Local national surgeons must be able to care for patients with orthopaedic implants, particularly in the event they become infected. Historically, infected intramedullary devices have posed a
In this chapter, the term “casting material” is used to describe either plaster or fiberglass for constructing casts. Both are acceptable to use for transport casts.

General Considerations of Wound Management

- **Initial management.**
 - Treat by debridement and irrigation as soon as feasible to prevent infection.
 - Tibia fractures are at high risk for infection following internal fixation (about 40%, historically).
 - Biplanar radiographs should be obtained when possible.
 - Neurovascular status of the extremity should be documented and checked repeatedly.
 - Internal fixation is contraindicated in the face of gross contamination.
 - Begin IV antibiotics as soon as possible and maintain throughout the evacuation chain. Use a broad-spectrum cephalosporin (Cefazolin 1 gram q8h).

- **Wound incision/excision.**
 - Guidelines as per Chapter 9, Soft-Tissue and Open Joint Injuries.
 - Use longitudinal incisions to obtain exposure.
 - Fascia is incised longitudinally to expose underlying structures and facilitate _compartment release._
All foreign material in the operative field must be removed, along with dead bone and nonviable muscle (Fig. 22-1).

Bone fragments should be retained only if they have a viable soft-tissue attachment or are part of a joint surface.

Detached bone fragments are discarded.

Irrigation is essential (Fig. 22-1d).

Pulsatile lavage should be avoided.

Closure of wounds.

Primary closure is **NOT** indicated in these contaminated wounds. Loose approximation of tissues with one or two retention sutures **MAY BE** appropriate to cover nerves, vessels, and tendons; but, there must be a provision for substantial free drainage.

Skin grafts, local flaps, and relaxing incisions are contraindicated in the initial management.
Delayed primary closure may be attempted, as described in Chapter 9, Soft-Tissue and Open Joint Injuries. This should be accomplished in a stable environment.

Negative pressure wound therapy is a useful adjunct in soft-tissue wound management.

Bivalving Casts

When bivalving a cast, splitting it into anterior and posterior halves is preferred. The purpose of bivalving is to accommodate soft-tissue swelling, thus lessening the chance of postcasting compartment syndrome. It is important that the underlying cast padding also be completely split underneath the cast cuts; otherwise, the cast padding can restrict swelling and a compartment syndrome could still develop. In an acute setting, if a limb is casted, it is safest to bivalve the cast or simply immobilize with a splint.

External Fixation

- General technique: the surgeon should be familiar with four standard constructs of external fixation for use in the initial care of bone and joint injuries: femur, tibia, knee, and ankle. External fixation can also be applied for humerus and ulna fractures, as needed.
 - A thorough understanding of the anatomy of the lower extremity is essential for safe insertion of fixator pins.
 - The external fixator for military purposes should be modular and allow for modification as healing progresses.
 - Application of the external fixator may be done without the use of plain films or fluoroscopy.
 - Pins can be inserted without power instruments.
 - Enough pins should be placed to adequately stabilize the fracture for transport. This is usually two per clamp, but three may occasionally be required.
 - The present external fixation system (Hoffmann frame) allows for the use of either single pin clamps or multipin clamps. Both clamps are acceptable to use in standard constructs.
 - Multipin clamps provide greater stability and are the current fixators fielded. Dual pin placement (with multipin clamps) is described below. The technique for single pin placement is similar.

 Femur diaphyseal fracture technique.
 - The entire limb is prepared for surgery, from the anterior superior iliac spine to the toes.
 - A standard OR table or portable fracture table may be used.
 - An assistant should apply counterpressure while pins are inserted.
 - Precise reduction is not necessary. A padded “bump” under the thigh will help reduce the fracture (Fig. 22-2).
 - The position of the proximal femur should be identified by palpation. A 1-cm longitudinal stab incision is made over the midaxis, or
midlateral axis, of the femur (Fig. 22-3). The pin closest to the fracture should be outside of the fracture hematoma and at least 3

Fig. 22-2. Placing a towel underneath the thigh helps to reproduce the bow of the femur.

- Spread soft tissue bluntly down to the bone. Insert a pin through this opening and when reaching the bone, assess its midpoint by sweeping the pin anteriorly and posteriorly (Fig. 22-5). Your assistant should provide stability and counterpressure. Two taps on the end of the bit brace will indent the bone and stabilize the pin for insertion. Apex pins are placed by hand or power. Use 5-mm half-pins. Insert the pin in the midportion of the bone and advance through both the near and far cortices of the bone (Fig. 22-6). The pin will move easier as it enters the intermedullary canal and then becomes more difficult to drive as it enters the far cortex.

Fig. 22-3. Place a 1-cm longitudinal incision in line with the midlateral axis of the femur.

- Place a multipin clamp over the inserted pin. Ideally, the pin should occupy one of the end positions (eg, position 1 or 5; Fig. 22-7).
- Using the clamp as a guide, insert a second pin through the clamp. An assistant should hold the clamp. Ensure that the clamp is aligned with the bone and that bicortical purchase is obtained. The second pin must be parallel to the first pin. To ensure they are parallel, it can be helpful to use the clamp as a guide for placing the second pin. Use the pin sites that are the farthest apart on the clamp as possible for biomechanical stability (clamp positions 1 and 5 are best; see Fig. 22-7). A third pin may be inserted if needed for additional clamp stability.
Fig. 22-4. Pins should be placed outside of the fracture hematoma and at least 3 fingerbreadths from the fracture.

Fig. 22-5. Femoral pin placement.

Fig. 22-6. Bicortical placement of 5-mm half-pin.

Fig. 22-7. Multipin clamp showing positions 1–5.

- Repeat this technique when inserting pins and applying the multipin
clamp to the distal femoral fracture fragment. rods for increased stability.

- Connect the two clamps with elbows, bar-to-bar clamps, and two longitudinal bars placed parallel to each other (Fig. 22-8).
- Reduce the fracture with longitudinal traction. Manipulating the fracture fragments using the clamps may be helpful. Once adequate reduction is achieved, tighten all of the connections. Precise reduction is not necessary.

Tibia shaft fracture technique.

- Place a 1-cm longitudinal incision over the midportion of the anteromedial tibia (Fig. 22-9). The pin closest to the fracture site should be outside the hematoma and at least 2–3 fingerbreadths away from the fracture site (Fig. 22-10).

![Fig. 22-9. Palpation of the anterior and posterior margins of the medial face of the tibia where a 1-cm incision has been made midway between these two points.](image)

- Insert the first pin into either the proximal or distal fragment. Place the pin perpendicular to the subcutaneous border of the tibia and centered across the width of the tibia. Ensure that pins engage both cortices (Fig. 22-11).
- Using the clamp as a guide, insert a second pin through the clamp. An assistant should hold the clamp. Align the clamp with the bone and advance pin through both cortices. The second pin must be parallel to the first. Use the pin sites as far apart on the clamp as possible for biomechanical stability (positions 1 and 5 in Fig. 22-7). The second pin should be through the opening farthest away from the fracture site.
Fig. 22-10. The anteromedial surface is the safest location for tibial pins. Pins should be a minimum of 2 or 3 fingerbreadths from the fracture site.

- Apply a second multipin clamp and two pins in the same manner to the other main fracture fragment (Fig. 22-12). Connect the two clamps via two elbows, bar-to-bar clamps, and a single bar (Fig. 22-13).
- Most combat-related fractures are comminuted. Therefore, a second bar should be added for increased fracture stabilization (Fig. 22-14). Use a single bar for stable fractures only.
- Confirm reduction with available means.

- **Technique to span knee.**
 - Indications are proximal tibia fractures, distal femur fractures or extensive knee injuries, or vascular repairs in the popliteal fossa.

Fig. 22-11. Bicortical placement of tibial pins.
Fig. 22-12. Application of the second multipin clamp and two pins. Add 30-degree elbows to the two sets of multipin clamps. Point the elbows in a direction that will position the bar(s) away from open wounds and allow for the best access.

- Check the distal vascular status of the limb prior to and after the procedure. If there is a vascular injury, refer to Chapter 25, Vascular Injuries.
- An assistant will be required to help apply the frame.

Fig. 22-13. Addition of the cross-bar and two bar-to-bar clamps. Apply longitudinal traction to reduce the fracture and then tighten the frame in alignment.

Fig. 22-14. The two-bar apparatus is a more stable construct for typical, unstable tibial fractures. This requires the use of two kits.
- General reduction maneuver should be longitudinal traction with slight (10°–15°) flexion at the knee.
- Pins are placed anteromedial on the proximal tibia and anterolateral on the distal femur. Pin placement should be outside the zone of injury, at least 3 fingerbreadths from a fracture site and outside the knee joint. A longitudinal stab incision is made over the mid-anterolateral aspect of the femur and the pin inserted at a 45-degree angle to the long axis of the bone. Depending on the fracture configuration, it may also be placed directly anteriorly, although it is generally better to avoid pin placement through the quadriceps tendon.
- Blunt dissection is used to create a corridor to the bone.
- A single pin is inserted by hand or power through both cortices of the bone.
- A multipin clamp is used as a guide for a second pin. The second pin must be parallel to the first pin and also be bicortical—care should be taken to maintain pin alignment. The proximal tibia should be palpated on the anteromedial surface, and the anterior-posterior border should be identified. Midway anterior-posterior, a 1-cm longitudinal stab incision should be made, followed by blunt, soft-tissue dissection to the bone.
- A multipin clamp should be used as a guide to insert a second pin in the proximal tibia.
- The two pin clusters (femur and tibia) should be connected via 2 elbows, 2 bar-to-bar clamps, and 1 bar. The knee should be aligned.
- A second bar should be added in the manner described previously.

Technique to span ankle.
- An assistant will be required to help apply the frame and reduce the ankle.
- General indications are for open distal tibia fractures and open ankle wounds.
- Pins should be inserted on the anteromedial surface of the tibia and on the medial aspect of the calcaneus.
- Check the distal vascular status prior to and after the procedure. Mark where the posterior tibial and dorsalis pedis artery pulses can be felt.
- Palpate the anteromedial border of the tibia. Make a 1-cm longitudinal incision midway between the anterior-posterior border of the tibia. Insert the most distal pin on the tibia outside the zone of injury, at least 3 fingerbreadths from the fracture site.
- Using a multipin clamp as a guide, insert a second pin in the tibia proximal to the first pin. The pin must be parallel and aligned with the longitudinal axis of the first pin.
- Palpate the medial border of the calcaneus. Make a longitudinal incision over the calcaneus avoiding the posterior neurovascular
structures: dissect to the bone with a blunt instrument and insert the pin. When available, insert a centrally threaded pin from medial to lateral. The pin insertion point should be the junction of posterior and middle one-third distance between medial malleolus and posterior calcaneus tuberosity. If using two half pins, then apply in posterior half of this line.

- Using a multipin clamp as a guide, insert a second pin in the calcaneus.
- Connect the 2 clamps via 2 elbows, 2 bar-to-bar clamps, and 1 bar.

Skeletal traction.

- Skeletal traction provides a quick means to immobilize fractures with a minimum of technical support.
- External fixation is preferred because it is more manageable in the transport environment.
- Currently, traction equipment is hard to find at field hospitals.
- Indications.
 - Patients who are expected to have more than one procedure in the same forward hospital prior to evacuation.
 - Large casualty load.
- Technique.
 - Large, threaded Steinmann pins are used to obtain skeletal traction of a femur or tibia.
 - Aseptic preparation of a pin site is necessary prior to placement.
 - Apply local anesthetic to planned pin site.
 - Incise skin and dissect to bone bluntly.
 - For femur fractures, incision is made 2 cm posterior and lateral to the tibial tuberosity (deep to the tibial tuberosity, as in Fig. 22-15). Place pin from lateral to medial completely through the proximal tibia. Place the thigh and leg on the bed, and apply longitudinal traction of 20–40 lbs.

![Appropriate site for placement of proximal tibial traction pin.](image)

- Apply a Thomas splint with a Pierson device, with weight applied midthigh (10–20 lbs), to the leg (10–20 lbs), and to the traction pin (20–40 lbs) to obtain balanced skeletal traction.
For tibial fractures, incise medially 2 cm anterior and 2 cm cephalad from the posterior calcaneus. Place the pin from medial to lateral across the calcaneus. Place the leg on the bed balanced and apply traction to the calcaneal pin (10–20 lbs).

Wait at least 30 minutes after applying traction to obtain radiographs.

- **Care in the evacuation chain.**
 - When planning procedures, consider the potential for complications during air evacuation.
 - Consider medication supply for transport (see Chapter 4, Aeromedical Evacuation).
 - Skeletal traction should **not** be used for transportation.
 - Casts should be bivalved. Monitor extremity neurovascular status during transport because **casts may act as tourniquets due to tissue swelling**.
 - All documentation, including radiographs, should accompany the patient.
 - Well-padded splints can be used with and without external fixation with large open wounds, such as blast injuries. Circumferential dressings should be avoided because they can be constricting.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 23
Amputations

Introduction

Battle casualties who sustain amputations have the most severe extremity injuries.

- Historically, 1 in 3 patients with a major amputation (proximal to the wrist or ankle) died, usually of exsanguination.
- Although complete and near-complete traumatic amputations are visually dramatic, attention must be focused on the frequently associated life-threatening injuries, including control of ongoing hemorrhage from the damaged limb(s).

Goals for initial care are to preserve life, prepare the patient for evacuation, and leave the maximum number of options for definitive treatment.

Indications for amputation following trauma:

- Partial or complete traumatic amputation.
- Irreparable vascular injury or failed vascular repair with an ischemic limb.
- Life-threatening sepsis due to severe local infection, including clostridial myonecrosis.
- A patient in extremis with severe soft-tissue and bony injuries to the extremity precluding functional recovery.

The surgeon must balance the realistic likelihood of ultimate reconstruction of a functional extremity against the risk of death associated with attempts to preserve a limb. It is always desirable to secure the opinion of a second surgeon before amputating. The tactical situation or the patient in extremis may require amputation in cases where the limb might otherwise have been salvaged.

- **Battlefield amputations are unique.**
 - Most commonly due to explosive munitions, with penetration and blast effects (see Chapter 1, Weapons Effects and War Wounds).
 - Involve a large zone of injury with a high degree of contamination, which may affect the level of amputation and/or reconstructive options.
 - Require staged treatment, with evacuation out of the combat zone prior to definitive closure.

Amputations should be performed at the lowest viable level of
soft tissues, in contrast to traditional anatomical amputation levels (eg, classic above the knee, below the knee, etc) to preserve as much limb as possible. In general, a longer residual limb is desirable for final prosthetic fitting, and initial preservation of all viable tissues maximizes the reconstructive and coverage options available at higher levels of care.

<table>
<thead>
<tr>
<th>The open length preserving amputation procedure has two stages: initial and reconstructive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial—Complete the amputation at the lowest possible level of bone and prepare the patient for evacuation to the next level of care.</td>
</tr>
<tr>
<td>Reconstructive—Involves final healing of the limb to obtain the optimal residual limb.</td>
</tr>
<tr>
<td>NOTE: The final level of amputation and definitive treatment of the residual limb should occur in the stable environment of a CONUS hospital, not in the combat zone hospital. In the case of host nation casualties or enemy combatants, wherein evacuation is not an option, several debridement and irrigation procedures are generally indicated prior to attempting definitive amputation and closure to prevent high wound failure and infection rates.</td>
</tr>
</tbody>
</table>

- All viable skin and soft tissues distal and proximal to the indicated level of bone amputation should be preserved for use in subsequent closure of the amputation stump. These tissues may be considered “flaps of opportunity” and can add length to the stump. This is especially true for amputations below the knee. Short tibia limbs can be saved with posteriorly based flaps because the gastrocnemius and soleus are frequently preserved following blast injury. To save length, any shape or form of a viable muscle or skin flap should be preserved. Preservation of even oblique or irregular soft-tissue flaps or viable bone lacking distal soft-tissue coverage maximizes the reconstruction options at higher levels of care. Late free tissue coverage can sometimes salvage functional joint levels. Therefore, residual viable tibia (if distal to the tibial tuberosity) should be preserved initially, even if the remaining soft tissues would not initially permit wound closure.

Technique of Amputation

- Surgical preparation of the entire limb: to allow for evaluation of planes of injury that may be much higher than initially evident and allow access to the potential need for proximal vascular control.
- Tourniquet control is mandatory. If a tourniquet was placed in the prehospital setting for hemorrhage control, it is prepped entirely within the
surgical field.
- Excise nonviable tissue.
 - Necrotic skin and subcutaneous tissue or skin without vascular support.
 - Muscle that is friable, shredded, grossly contaminated, or noncontractile. (This muscle is usually at the level of the retracted skin.)
 - Bone that is grossly contaminated or devoid of soft-tissue attachment for blood supply. Bone is transected at its lowest viable level, regardless of the residual soft-tissue coverage.
- Identify and securely ligate major arteries and veins to prevent hemorrhage in transport.
- Identify nerves and transect them at the level of available muscular coverage to minimize patient pain due to dressing changes. More proximal traction neurectomy is best reserved for the definitive closure procedure at higher levels of care. Initial traction neurectomy may preclude further reconstructive options at definitive closure as the final level of amputation may be well proximal to the initial level of viable tissue debridement. Ligate the major nerves if they are bleeding (eg, sciatic); tagging of major nerves with colored suture is reasonable, but not mandatory.
- Preserved muscle flaps should not be sutured, but should be held in their intended position by the dressing.
- Flaps should not be constructed at the initial surgery to facilitate later closure.

In blast injuries, particularly landmine injuries, the blast forces drive debris proximally along fascial planes. It may be necessary to extend incisions proximally parallel to the axis of the extremity to ensure adequate surgical debridement of the wound. Each successive debridement should explore all intermuscular and fascial planes to avoid missing areas of purulence or necrosis, without devascularizing the remaining skin flaps.

The residual limb is never closed primarily.

- **Special considerations.**
 - Primary Symes (ankle disarticulation) has a high failure rate due to heel pad necrosis during transport. The wound should simply be debrided, retaining the clean hindfoot (talus and calcaneus).
 - Primary knee disarticulation is problematic due to skin and tendon retraction necessitating reamputation at a higher, often less functional level. It is preferable to leave even a very short (1–2 cm), clean transtibial stump—even though nonfunctional—to prevent retraction, as well as to preserve as much patellar tendon, gastrocnemius, and distal skin as possible.
 - Fractures, when present proximal to the mangled segment, should not determine amputation level, but must be treated appropriately (cast,
external fixator) to preserve maximal length and salvage functional joint levels.

- Plan the initial amputation solely on the qualities of the wound and surrounding tissues, never on the hope of achieving a particular level or flap pattern as a final result. The combat surgeon’s goals are patient survival, hemostasis, and a thorough and complete debridement. Trying to preserve marginal tissue in the hope that a better stump can be constructed may lead to subsequent infection and a more proximal amputation level.

- For high transfemoral and more proximal amputations (ie, hip disarticulation or hemipelvectomy), particularly when bilateral injuries are present, proximal vascular control via exploratory laparotomy and temporary clamping of the common iliac vessels and/or infrarenal aorta and inferior vena cava can be lifesaving. When this is performed for bilateral proximal amputations, complete proximal fecal diversion with distal colonic washout should be strongly considered concurrently, independent of abdominal injuries, to prevent fecal contamination of wounds.

Dressings and Prevention of Skin Retraction

Because amputations must be left open, skin retraction is likely, causing the loss of usable limb length and making definitive closure difficult. This is particularly true of a patient who is in the evacuation chain for a prolonged period.

Skin Traction

Ideally, skin traction should be maintained throughout the course of treatment. If evacuation times are reliably very short (1–3 days), skin traction may be omitted. If there is the possibility of any delay, use skin traction to preserve limb length. When tactical conditions or resources are not available for application of casts, skin traction may be applied through weights off the end of the bed before and after transport.

- Dry, fine mesh gauze is loosely placed over the open wound. Preserved flaps are not suspended freely, but are held in their intended position by the dressing (Fig. 23-1).
- Absorbent dressing is placed over the residual limb.
- Tincture of benzoin is applied proximally on the skin up to 2 cm from the wound edge, but not including the preserved flap.
- A stockinette for skin traction is applied.
- Wrap the stockinette with a figure-of-8 elastic wrap.
- 2–6 pounds of traction are applied through the stockinette/wrap. This may simply involve a weight attached via parachute cord to the stockinette. However, during transport, hanging weights are problematic and may be substituted with light elastic, such as surgical tubing or elastic exercise tubing applied through a transportation cast as described below.
A transportation cast may be applied to prevent contracture and allow for continuous traction.

Fig. 23-1. Skin traction.

Vacuum-assisted subatmospheric wound therapy dressings may be placed prior to evacuation only if reliable maintenance of suction can be expected during transport and on arrival at the next level of care. If a subatmospheric wound dressing is used, skin traction and countertraction can be achieved via a combination of negative pressure from the device and opposing skin tension using running tied vessel loops over the reticulated open cell foam and secured under tension to the skin edges with staples.

Postoperative Management

- Prevention of contracture.
 - Below-the-knee amputations are at risk for knee flexion contractures. These contractures are preventable by using a long leg cast or splint. Splinting in extension requires closer monitoring and meticulous cast padding placement and cutouts over the patella. Pillows should never support the knee because of the increased risk of flexion contractures.
 - Above-the-knee amputations are at risk for hip flexion contractures. Prone positioning and active hip extension exercises will avoid this complication. When the casualty is supine, sandbags may be also applied to the anterior distal thigh.
- Prevention of hemorrhage: a tourniquet should be readily available at bedside or during transport for the first week following injury.
- Pain control: patient comfort is paramount following amputation, particularly if dressing changes are required. Adequate analgesia should be available, and the patient should be counseled regarding phantom limb pain/sensations.

For Clinical Practice Guidelines, go to
Chapter 24

Injuries to the Hands and Feet

Introduction

Combat injuries to the hands and feet differ from those of the arms and legs in terms of mortality and morbidity. The hands and feet have an important commonality: an intricate combination of many small structures that must function smoothly together. Because these terminal appendages are extremely specialized and represent the interface of the person to the outside world, a minor wound—causing no lasting impairment if inflicted, for example, on the thigh—can result in life-long disability when it occurs on a hand or foot.

Types of Injury

- Nonbattle injuries resulting in laceration, contusion or sprain of the hand or foot, and crush injuries involving either the hands or feet from heavy equipment are common. Such crush injuries may result in compartment syndrome.
- Missile, blast, and high-energy ordnance injuries involving the hands and feet are common in combat and may result in mutilating injuries with a permanent loss of function, innervation, or distal extremity tissue (amputation).

The Hand

Even apparently minor wounds distal to the wrist crease may violate tendon sheaths and joints, resulting in a serious deep space infection. Such wounds require a high index of suspicion for injury and a low threshold for operative exploration.

Evaluation and Initial Management

- The casualty’s upper extremities should be exposed.
- Rings, watches, and other potentially constrictive material must be removed immediately.
- A preliminary neurological examination should be performed and documented.
- Vascular status of the hand should include an assessment of radial and ulnar pulses, and perfusion to each fingertip as assessed by color, warmth, and capillary refill.

Treatment of Hand Compartment Syndrome

- The hand has 10 separate fascial compartments (4 dorsal interossei, 3
palmar interossei, the thenar muscles, the hypothenar muscles, and the
adductor pollicis; Fig. 24-1).

![Diagram showing compartments of the hand]

Fig. 24-1. Compartments of the hand.

- A complete hand fasciotomy consists of four incisions (shown in Fig. 24-2):
 - The **first incision** is placed along the thumb metacarpal at the radial aspect of the hand to release the fascia of the thenar muscles.
 - The **second incision** is centered dorsally on the index metacarpal. On the radial side of this bone, the fascia of the first dorsal interosseous and the adductor pollicis are incised. On the ulnar side of this bone, the fascia of the dorsal and palmar interossei is incised.
 - The **third incision** is centered dorsally on the ring metacarpal. From this wound, the fascia of the dorsal and palmar interossei is released on both sides of this bone.
 - The **fourth incision** is placed along the small metacarpal on the ulnar aspect of the hand to release the fascia of the hypothenar muscles.

- Although compartments are not well defined in the fingers, fingers that are severely swollen may require release of dermal and fascial constriction; care should be taken to place the skin incision away from the neurovascular bundles (Fig. 24-3).
Surgical Technique

Do not blindly clamp bleeding tissues because nearby nerves may be injured. If unable to control the bleeding with pressure, isolate the vessel under tourniquet control and tie off or clamp under direct vision.

- General or regional (block) anesthetic is required; local infiltration of anesthetic is inadequate. Epinephrine is never injected into the hands or fingers.
- Either the radial or ulnar artery may be ligated if necessary. Never ligate both.
- Debridement removes embedded foreign matter and dead tissue.
- Tissue, including skin, with marginal or questionable viability is left for subsequent evaluation to improve chances for optimal outcome.
- The fingers are not amputated unless irretrievably mangled.

Viable tissue, but potentially nonfunctional, is retained and stabilized for later reconstruction to include other locations.

Specific Tissue Management
- **Bone**: Provisional stabilization of fractures with Kirschner wires (K-wires),
when skillfully done, may enhance patient comfort. Do not compromise future reconstructive efforts with overzealous initial management. A plaster splint may be the best option.

- **Tendon:** Minimal excision of tendons should be performed. No attempt at repair should be made in the field.
- **Nerve:** Do not excise nerve tissue. No attempt at repair should be made in the field.
- One may tag the cut ends of nerves and tendons if skillful to facilitate later repair. Monofilament nonabsorbable suture (6.0 or smaller) should be placed through the epineurium only of cut nerve ends.

Closure of wounds is delayed. However, exposed tendon, bone, and joint should be covered with viable skin, if possible, to prevent desiccation.

Dressing and Splinting

Dress the hand in the safe position (Fig. 24-4). The wrist is extended 20°, the metacarpophalangeal joints are flexed 70°–90°, and the fingers (proximal and distal interphangeal joints) are in full extension.

- Fine-mesh gauze is first laid on the wounds and covered with a generous layer of fluffed gauze.
- The entire wound should be covered, but the fingertips left exposed, if possible, to monitor perfusion.
- A splint is applied, immobilizing all injured parts and extending one bone or joint beyond. A palmar plaster slab is routine, but a dorsal one may be added for additional stability.

![Fig. 24-4. Hand splint position.](image)

The Foot

Penetrating injuries of the foot frequently result in prolonged morbidity and disability. Crush injuries and injuries from blast are more likely to result in an unsatisfactory result than are wounds made by low-velocity bullets or isolated fragments. This is especially true when there is loss of the heel pad, significant neurovascular injury, or when the deep plantar space has been contaminated. The ultimate goal of treatment of these injuries is a relatively pain-free, plantigrade foot with intact plantar sensation.
Evaluation and Initial Management

- The zone of injury, with both open and closed injuries of the foot, is often more extensive than is apparent with the initial inspection, and a low threshold for extensile debridement using longitudinal incisions should be observed.
- All clothing and boots should be removed and the entire foot exposed.
- The vascular status of the foot should be assessed by palpation of the dorsalis pedis and posterior tibial pulses or with use of a Doppler device if available. An assessment of capillary refill in the toes should also be made to assess peripheral perfusion.
- Transected major blood vessels to the foot should be double suture ligated to include plantar and dorsal pedal arteries and veins. Transected nerves may be tagged with suture for subsequent identification.
- At the time of debridement, small, contaminated, nonarticular bone fragments without soft-tissue attachment should be removed and discarded.
- High-volume, low-pressure irrigation for all open wounds is important as an adjunct to thorough surgical debridement. Vessel loop tissue tensioning technique may be used to prevent wound expansion during transport.

All wounds should be left open.

Sterile wet-to dry dressings or negative pressure wound dressings should be placed for transport.

Injuries to the Hindfoot

- Severely comminuted, open fractures of the talus may require takedown; but this decision should be left to higher levels of care.
- The talus is best debridged through an anterolateral approach to the ankle extended to the base of the fourth metatarsal.
- Penetrating wounds into the plantar aspect of the heel pad can be approached through a heel-splitting incision to avoid excessive undermining of this specialized skin.
- Transverse gunshot wounds of the hindfoot are best managed by medial and lateral incisions, with the majority of surgery performed laterally to avoid medial neurovascular structures.

Injuries to the Midfoot

- Tarsal and metatarsals are best approached through dorsal longitudinal incisions. Dorsal incision interosseous fasciotomies do not improve outcomes from potential compartment syndromes.
- Contamination of the deep plantar compartments of the foot is best managed through a plantar medial incision that begins 1 inch proximal and 1 inch posterior to the medial malleolus and extends across the medial arch ending on the plantar surface between the second and third metatarsal heads. The medial neurovascular structures must be identified during this approach. A full compartment release can also be performed through this
incision.

Injuries to the Toes

- Every effort should be made to preserve the great toe.
- Amputation of the lateral toes is generally well-tolerated.

Foot Compartment Syndrome

- There are nine compartments in the foot.
 - The four interosseous compartments are bounded by the metatarsals medially and laterally by the dorsal interosseous fascia and the plantar interosseous fascia.
 - The lateral compartment is bounded by the fifth metatarsal shaft dorsally, the plantar aponeurosis laterally, and the intermuscular septum medially.
 - The central compartment is bounded by the intramuscular septum laterally and medially, the interosseous fascia dorsally, and the plantar aponeurosis plantarly.
 - The medial compartment is bounded by the inferior surface of the first metatarsal dorsally, the plantar aponeurosis extension medially, and the intramuscular septum laterally.
 - The calcaneal compartment contains the quadratus plantae muscle.
- There is no evidence that a double dorsal incision and interosseous compartment release alter outcomes, and, in fact, may increase infectious and painful complications.
- To spare the dorsal soft tissue and reduce subsequent risk for infection and complex regional pain syndrome, a single incision medial fasciotomy may be used.
- A medial approach to the foot is made through the medial compartment, reaching across the central compartment into the interosseous compartment dorsally and lateral compartment releasing all the way across the foot (see description in this chapter’s section on Injuries to the Midfoot; also see Fig. 24-5).
 - As with all battle wounds, the fasciotomy is left open and is covered with a sterile dressing. Jacob’s ladder vascular loops may be used to avoid wound expansion during transport.
Fig. 24-5. Central compartment releases through medial approach.

Stabilization
- K-wires can be used for temporary stabilization following reduction. Alternatively, for larger segmental involvement, a spanning external fixator may be placed to regain overall anatomical length and alignment. Plate or screw fixation in the combat zone should usually be deferred to Role 4 facilities.
- A bivalved cast or splint is adequate for transport to a site of more definitive care.

Take care to avoid iatrogenic pressure sores by providing adequate padding to include bulky cotton padding. External fixation “kickstands” are useful, but only when external fixation is used for stabilization and not as a primary treatment.

Reference

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 25

Vascular Injuries

Introduction

- History.
 - World War II: Popliteal artery injuries were routinely ligated and associated with a 73% amputation rate.
 - Korean War: Formal repair of peripheral arterial injuries instituted.
 - Vietnam War: Further refinements in arterial repair; amputation rate for popliteal artery injuries is reduced to 32%.
 - Iraq and Afghanistan: Forward Role 2 care refines use of temporary vascular shunts, and Joint Theater Trauma System (JTTS) advances recoding of injury.
- There are various types of wounds seen in combat.
 - Low-velocity missile/fragment damages a blood vessel lying directly in its path.
 - High-velocity missile/fragment wounds with blast causes widespread damage, including vascular injury at a distance (remote injury).
 - Blunt trauma, often resulting from sudden deceleration in motor vehicle accidents, falls, and rail and air disasters.
 - Popliteal artery injury associated with posterior knee dislocations.

Epidemiology of Vascular Injury

- 1 in 5 (20%) battle injuries (nonreturn to duty) is coded with hemorrhage control not otherwise specified.
- Rate of vascular injury in modern combat is 12%, which is higher than the 1%–3% reported in World War II, Korea, and Vietnam. Rate of operative vascular injury is 9%, with half being ligations and half requiring repair.
- Extremity vessels account for 70%–80% of vascular injuries, whereas 10%–15% are in the cervical region and 5%–10% are in the torso.

Roles of Care and the Management of Vascular Injury

Each role has unique approaches to the management of vascular injury:

- Role 1.
 - Hemorrhage control (direct pressure, tourniquet, or topical hemostatic agent) and other life-saving interventions/evacuation.
- Role 2.
 - Operations at forward operating locations are abbreviated (preferably
Intervention on extremity vascular injury is important and may make the difference in meaningful limb salvage.

Primary amputation or ligation is also an acceptable damage control technique when other life-threatening injuries are present.

If limb salvage is to be attempted, tourniquet removal, exploration and control of vascular injury, thrombectomy, and administration of heparinized saline through the inflow and outflow vessels are recommended.

Restoration of flow can then be established using a temporary vascular shunt followed by fasciotomy and MEDEVAC (medical evacuation). Definitive repair at this level can be considered with caution, depending on available equipment and the tactical situation.

- **Role 3.**
 - Removal of tourniquet(s) and temporary vascular shunts placed as forward locations followed by definitive vascular repair.
 - Saphenous vein is preferred as a conduit for extremity vascular injuries.
 - Extremity evaluation will be difficult during AIR EVAC (air evacuation) out of theater, and Role 3 must ensure adequacy of perfusion, fasciotomy, and debridement.
 - Primary amputation or ligation is acceptable damage control technique when other life-threatening injuries are present.

- **Role 4 (Safe Haven).**
 - Surveillance of repair, including an assessment of soft-tissue wounds and tissue coverage prior to continuing AIR EVAC.

- **Role 4 (CONUS).**
 - Surveillance of vascular repair with duplex or CTA (computed tomography angiography) and assessment of soft-tissue wounds and adequacy of tissue coverage.
 - Revision of repairs with stenosis or inadequate tissue coverage leaving them prone to infection and blowout.
 - Delayed revascularization of viable, but poorly perfused, extremities in which ligation was chosen as the initial method of care.

Evaluation and Diagnosis

- **Hard signs.**
 - Active hemorrhage or expanding hematoma.
 - Bruit or thrill.
 - Ischemia—defined as the absence of Doppler signal in the extremity on multiple attempts over time after resuscitation—warming, and reduction of fractures.
 - Hard signs require management in the operating room with wide exposure and exploration of the injury (ie, control of vascular injury). Unlike civilian vascular trauma, there can be multiple injuries in a
single vessel.
- There is limited need for other diagnostic tests (ie, CTA or angiography) that take time and often provide unclear findings.

- **Soft signs.**
 - Proximity to vessel, fracture/injury pattern (eg, knee dislocation), hematoma, or question regarding palpable pulse.
 - Often require another diagnostic test, such as continuous wave Doppler with or without calculation of the injured extremity index.
 - CTA or angiography is useful as a diagnostic adjunct in the presence of soft signs of vascular injury.

- **The injured extremity index.**
 - Similar to the ankle–brachial index and is calculated using a manual blood pressure cuff and a continuous wave Doppler.
 - First step is to determine the pressure at which the arterial Doppler signal occludes in the injured extremity (numerator).
 - Cuff and Doppler moved to uninjured extremity and occlusion pressure of Doppler signal recorded (denominator).
 - Injured extremity index >0.90 is normal and has a high specificity for excluding extremity vascular injury in the absence of hard signs.

- **Angiography.**
 - Limited utility in the diagnosis of wartime extremity vascular injury and, in the presence of hard signs, preference is given to incision and exposure of segment in question.
 - Limitations related to the availability and quality of imaging technology in austere environments.
 - Extremity vasoconstriction with shock and hypothermia in young troops may lead to confusing or false-positive findings.
 - Angiography has the greatest utility in the setting of multiple penetrating wounds at various levels of the same extremity.
 - Angiography may be done via cut down using a small gauge needle or catheter to inject contrast minimizing complications.
 - Advantage to angio is its low volume of contrast, especially useful in patients at risk for renal failure.

- **CTA.**
 - Increasingly available in a mature theater of war and has the greatest utility in the diagnosis and triage of torso and neck wounds.
 - CTA is often used as a screening tool for suspected vascular injury.
 - This modality takes additional time, contrast, and technical experience to provide accurate and meaningful images.

Management Aspects: Extremity Vascular Injury

Upper Extremity

Consider prophylactic distal fasciotomies in all patients with prolonged ischemia times.
• **Subclavian artery.**

 ◦ **Recommendations:** Shunt or ligate as damage control, or definitive repair.
 ◦ **Utility of temporary shunt:** High, but difficult due to technical difficulty of exposure and placement.
 ◦ **Method/conduit:** Interposition graft/6–8 mm ePTFE (expanded polytetrafluoroethylene) or Dacron.
 ◦ **Pearls:**
 ♦ Proximal subclavian vessels and innominate are approached through a median sternotomy.

 ♦ Alternatively, a proximal left subclavian artery can be approached using a high (third intercostal space) anterolateral thoracotomy supraclavicular approach through the clavicular head of the sternocleidomastoid, sternothyroid/hyoid muscles to the scalene fat pad with retraction of the phrenic nerve, and division of the anterior scalene; may resect the clavicular head.

 ♦ The mid- and distal subclavian arteries on both sides can be exposed through combination supra- and infraclavicular incisions.

 ♦ Avoid injury to the phrenic nerve, internal mammary, thyrocervical, and vertebral arteries.

• **Axillary artery.**

 ◦ **Recommendations:** Shunt or ligate as damage control, or definitive repair.
 ◦ **Utility of temporary shunt:** High.
 ◦ **Method/conduit:** Interposition graft/reversed saphenous vein.
 ◦ **Pearls:**
 ♦ Supra- and infraclavicular incisions allow proximal control and distal exposure.

 ♦ Prep axilla, arm, and hand into operative field.

 ♦ Infraclavicular exposure includes division of the clavipectoral fascia and the pectoralis major muscle.

 ♦ The proximal axillary artery is then visible under the pectoralis minor muscle, which can be retracted laterally or divided.

 ♦ Avoid the brachial plexus, which will be deep or lateral to the axillary artery.

• **Brachial artery.**

 ◦ **Recommendations:** Shunt or ligate as damage control, or definitive repair.
 ◦ **Utility of temporary shunt:** High.
 ◦ **Method/conduit:** Interposition graft/reversed saphenous vein.
Pearls:
- Medial approach; adjacent to the median nerve in brachial sheath in biceps/triceps groove.
- Elastic artery with redundancy; flex arm slightly for interposition grafts to avoid kinking.
- Ligation may be tolerated if collaterals are intact.

- **Radial/ulnar arteries.**
 - Recommendations: Selective repair (maintain at least one vessel flow to hand).
 - Utility of temporary shunt: Low patency rate.
 - Method/conduit: Ligation or interposition graft/reversed saphenous vein.
 - Pearls:
 - Perfusion to the hand should be assessed with Doppler before and after occlusion or ligation.
 - The presence of an arterial Doppler signal in the hand obviates the need for arterial repair. Repair with saphenous vein in instances where there is persistent absence of an arterial signal.
 - The majority of individuals have ulnar-dominant perfusion; when possible, repair/reconstruct the ulnar artery.

Lower Extremity

Consider prophylactic distal fasciotomies in all injuries with prolonged ischemia times.

- **Common femoral artery.**
 - Recommendations: Shunt as damage control or definitive repair.
 - Utility of temporary shunt: High.
 - Method/conduit: Interposition graft/saphenous vein or 6–8 mm prosthetic.
 - Pearls:
 - Injury to the common femoral artery is often fatal because hemorrhage control in the field is difficult.
 - Expose artery at the inguinal ligament for proximal control (2–3 cm lateral to the pubic tubercle) (Fig. 25-1).
Fig. 25-1. Inguinal anatomy.

- Proximal control can be obtained in the retroperitoneum (ie, external iliac) through the proximal extension of this groin incision or by using an incision in the lower abdomen.
- Attempt to maintain flow in the profunda femoris artery. Cover with tissue (femoral sheath), the sartorius muscle, or the rectus flap (Role 4).

- Profunda femoris artery.
 - Recommendations: Selective repair.
 - Utility of temporary shunts: Low due to difficult exposure.
 - Method/conduit: Ligation or interposition graft/saphenous vein.
 - Pearls:
 - Exposure of proximal profunda is the same (distal extension) as the common femoral.
 - If superficial femoral is injured, repair of the profunda is necessary to heal amputations.
 - If superficial femoral is patent, ligation of mid- to distal profunda injuries is acceptable.
 - Proximal profunda injuries should be repaired with reversed saphenous vein interposition.

- Superficial femoral artery.
 - Recommendations: Shunt as damage control or definitive repair.
 - Utility of temporary shunts: High.
 - Pearls:
 - Medial incision with “bump” under calf.
- Exposure of the proximal ⅓ below the sartorius and distal ⅓ above the sartorius.
- Be wary of the adjacent vein (may be adherent to artery) and geniculate branches at the distal artery (Hunter’s canal).

Popliteal artery.
- Recommendations: Shunt as damage control or definitive repair.
- Conduit: Reversed saphenous vein.
- Pearls:
 - Medial incision with “bump” under calf for above knee and under thigh for below knee.
 - Natural dissection planes exist in exposing the above-knee popliteal artery (ie, popliteal space) with the exception of the need to divide the fibers of the adductor magnus that envelopes the distal superficial femoral artery (Hunter’s canal) (Fig. 25-2).
 - To completely expose the popliteal space, the medial attachments of the sartorius, semitendinosis, semimembrinosis, and gracilis to the medial condyle of the tibia can be divided. Distal exposure by division of the gastrocnemius and soleus from the tibia allows dissection to the anterior tibial origin and the tibial-peroneal trunk. Extraanatomical bypass can also be performed without the need to expose the injured segment (Figs. 25-3 and 25-4).

![Fig. 25-2. Exposure of distal femoral and popliteal vessels.](image-url)
Fig. 25-3. Medial approach to popliteal vessels.

Fig. 25-4. Posterior approach to popliteal vessels.

- **Tibial arteries.**
 - Recommendations: Selective repair.
 - Utility of temporary vascular shunts: Low due to difficult exposure, small caliber, and low patency rates.
 - Method/conduit: Ligation or interposition graft with saphenous vein.
 - Pearls:
 - If a Doppler signal is present at the ankle, indicating that one or more tibial arteries are patent, there is no need for additional tests or repair.
 - Doppler exam should be repeated as patient is resuscitated and warmed.
Exposure of the posterior tibial artery in the deep compartment of the leg is through a medial incision with a lift or “bump” under the knee or thigh. Repair with vein if three tibial arteries are injured and an absence of a Doppler signal persists.

- **Extremity venous injury.**
 - Recommendations: Selective repair.
 - Utility of temporary vascular shunts: Moderate for large vessels.
 - Method/conduit: Ligation, repair, or saphenous interposition graft.
 - Pearls:
 - Repair of proximal veins is indicated to reduce venous hypertension and congestion.
 - Shunts in proximal veins will usually remain patent until formal repair can be performed.
 - Techniques of lateral venorrhaphy are acceptable, although patch angioplasty or an interposition graft using saphenous vein from the uninjured limb is often necessary.
 - Consider removing thrombus from the distal venous segments with compression (eg, ACE wrap or Esmark bandage) prior to repair.
 - Pneumatic compression device on distal extremity to augment venous flow after repair.
 - Limb salvage benefit of vein repair compared with ligation has been shown 2 years after injury.
 - Repair of extremity venous injury should only be considered in stable patients.

 Management Aspects: Torso Vascular Injury

- **Aorta.**
 - Pearls:
 - With small penetrating injuries to the aorta of the chest or abdomen, primary repair can be attempted.
 - When not amenable to repair, a shunt can be placed (eg, chest tube).
 - Recognize that penetrating injury may involve entrance and exit wounds to the aorta that may not be obvious.
 - Management of *penetrating injury* to the aorta is very rare, given the prehospital lethality of this injury.
 - Management of *blunt injury* to the thoracic aorta (partial transection or pseudoaneurysm) is rare.
Most survivors can be managed medically with control of heart rate and blood pressure using beta-blockers and permissive hypotension.

Endovascular repair can be attempted at some Role 3 facilities.

- **Vena cava.**
 - Pearls:
 - Establish resuscitation lines above the diaphragm for abdominal vena cava injuries.
 - Vena cava injuries should be exposed using the Cattell-Braasch and Kocher maneuvers.
 - Lateral repair is acceptable, understanding that the lumen may be comprised.
 - If occlusion of the cava results in hypotension, clamp aorta to support central perfusion.
 - Retrohepatic and retroperitoneal hematomas should not be disturbed if not actively bleeding or expanding.
 - Attempt to identify large lumbar veins feeding the injured segment that can bleed profusely.
 - Patch angioplasty or resection and interposition graft using ePTFE are reconstructive options.
 - Ligation of the cava is acceptable as a damage control maneuver. If air transport is going to be utilized, then prophylactic bilateral lower extremity fasciotomies should be performed.

- **Portal vein and hepatic artery.**
 - Pearls:
 - Pringle maneuver should precede exploration of the portal triad.
 - Ligation of hepatic artery injuries is acceptable, if the portal vein is patent.
 - Lateral venorrhaphy is preferred.
 - Damage control ligation of the portal vein is an option; it results in hepatic ischemia, splanchnic congestion, and systemic hypervolemia.
 - Cholangiography through the gallbladder or with a small butterfly needle in the common bile duct should be considered in order to look for associated injuries of the extrahepatic biliary system.

- **Mesenteric arteries.**
 - Pearls:
• Present as supramesocolic zone I hematoma.
• Repair proximal mesenteric artery and vein injuries, including portal vein.
• Repair options: primary pledgeted repair, vein patch angioplasty, or replacement of the injured segment with interposition saphenous vein graft.
• Ligation can be performed for distal artery and vein injuries or as damage control.

• Renal arteries.
 • Pearls:
 ♦ Explore zone II expanding hematomas from penetrating injury; 90% of explored kidneys result in nephrectomy.
 ♦ Establish status of contralateral kidney by contrast study or manual palpation prior to nephrectomy.
 ♦ Damage control may require early nephrectomy. Devascularized kidney that is not bleeding may be left in situ.

• Iliac arteries.
 • Recommendations: Ligate or shunt as damage control, or definitive repair.
 • Utility of temporary vascular shunts: High.
 • Method/conduit: Interposition graft/ePTFE or Dacron or saphenous vein.
 • Pearls:
 ♦ Explore zone III hematoma from penetrating wound after establishing aortic control.
 ♦ Distal control is obtained at the inguinal ligament (for external iliac arteries).
 ♦ If there is primary injury to, or back bleeding from the internal iliac artery (hypogastric), it may be ligated. Try to avoid ligating both internal iliacs due to risk of gluteal ischemia/necrosis.

Management Aspects: Cervical Vascular Injury

• Carotid artery.
 • Recommendations: Ligate or shunt as damage control, or definitive repair.
 • Utility of temporary vascular shunts: High.
 • Method/conduit: Vein patch or vein interposition graft.
 • Pearls:
 ♦ Zone I injuries best approached with median sternotomy for ample
proximal exposure.

- Early control of common carotid.
- 3 Fr Fogarty catheter with three-way stopcock is useful to occlude internal carotid back bleeding.
- During carotid repair consider temporary shunt and augmentation of mean arterial pressure.
- CTA aids in the triage for urgent operation, improves operative planning, and images the brain as a baseline.
- A selective approach to exploration of zone II neck wounds is acceptable in a patient without hard signs of vascular injury or aerodigestive involvement.
- Penetrating neck wounds that are not selected for exploration should undergo CTA to further evaluate for vascular, tracheal, or esophageal injury.
- Exposure of the carotid artery is through a standard anterior sternocleidomastoid neck incision.

Vertebral artery.
- Recommendations: Ligate.
- Utility of temporary vascular shunts: None.
- Method/conduit: Not applicable.
- Pearls:
 - Bleeding vertebral artery injuries are ligated with no role for reconstruction in theater.
 - Vertebral artery occlusions are managed with anticoagulation, if it is not contraindicated.
 - Endovascular embolization is an option if injury is not accessible by standard exposure.
 - **Exposure usually requires rongeur to open vertebral foramen; temporary occlusion with bone wax can be helpful.**

Jugular vein.
- Recommendations: Ligation or selective repair.
- Utility of temporary vascular shunts: None.
- Method/conduit: Lateral venorrhaphy, vein patch, or saphenous vein.
- Pearls:
 - Significant jugular vein injuries can be ligated without adverse effects.
 - Repair of jugular injuries should be considered in the setting of traumatic brain injury with elevated intracranial pressure.
• Large vein injuries.
 ◦ Pearls:
 ♦ Initial control can be accomplished by one or more fingers on the bleeding segment.
 ♦ **Use of clamps for control may injure the vein further.**
 ♦ Avoid too small of a needle and suture, which are difficult to maneuver in blood. 4-0 PROLENE on an SH-tapered needle is a substantive suture on a needle large enough to see.
 ♦ Manual direct pressure can be replaced with a small sponge stick or Kittner.
 ♦ Hemorrhage control with ligation is preferable to patency with death from exsanguination.
 ♦ **Be wary of risk of air embolism with large vein injuries.**

• Ligation of vessels.
 ◦ Pearls:
 ♦ Acceptable damage control maneuver, especially for small, more distal arteries and veins (Table 25-1).

Table 25-1. Vessels Amenable to Ligation

<table>
<thead>
<tr>
<th>Veins That Can Be Ligated Routinely</th>
<th>Arteries That Can Be Ligated Routinely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal/external jugular</td>
<td>Digital</td>
</tr>
<tr>
<td>Brachiocephalic</td>
<td>Radial or ulnar, but not both; preserve ulnar when possible</td>
</tr>
<tr>
<td>Infrarenal inferior vena cava</td>
<td>External carotid</td>
</tr>
<tr>
<td>Left renal</td>
<td>Brachial distal to profund and adequate wrist; Doppler signal</td>
</tr>
<tr>
<td>Internal iliac</td>
<td>Subclavian branches</td>
</tr>
<tr>
<td>Subclavian</td>
<td>Internal iliacs</td>
</tr>
<tr>
<td>Mesenteric</td>
<td>Profunda femoris</td>
</tr>
<tr>
<td>Tibialis</td>
<td>Hepatic</td>
</tr>
</tbody>
</table>

♦ Temporary vascular shunting to restore perfusion should be considered before ligation.
♦ Continuous wave Doppler should be checked before arterial
ligation to judge perfusion/viability.

- **Fogarty thrombectomy catheters.**
 - Pearls:
 - Sized at 2–7 Fr catheters; maximum balloon diameter of the 2 and 3 Fr catheters is 4 and 5 mm, respectively.
 - Inflate with saline using a 1 cc tuberculin syringe (0.2–0.75 cc) while withdrawing from the vessel.
 - Goal is clot, not intima, removal; so, do not overinflate or “drag” too much.
 - May be used to control bleeding with use of a three-way stopcock to maintain inflation.
 - Proximal and distal thrombectomies should be performed prior to performing repair.

- **Temporary vascular shunts.**
 - Pearls:
 - Inline shunts rest in the vessel (“in situ”), whereas long external shunts are designed to loop.
 - Inline Argyl shunts come in a cylinder container with sizes 8, 10, 12, and 14 Fr Fogarty catheters.
 - Inline Javid shunts are longer and individually packaged.
 - Sundt shunts are designed with short (15 cm; inline) and long (30 cm; external) profiles.
 - Equal success has been had with Argyl, Javid, and Sundt shunts without systemic anticoagulation.
 - Secured with silk ligatures and patent for up to 6 hours; reports of longer duration exist.
 - Shunts should be removed with formal repair in-theater prior to AIR EVAC to Role 4.
 - Temporary vascular shunts are effective and should be considered in the management of nearly all extremity vascular injury patterns, including proximal venous injuries. Their main advantage is provision of early restoration of flow and mitigation of the damaging effects of arterial ischemia and venous hypertension. As an abbreviated procedure, compared with formal vascular repair, shunting extends the window of opportunity for limb salvage in some patterns of vascular injury. Although the patency at 3–4 hours is higher in larger, more proximal vessels (axillary/brachial and femoral/popliteal), shunts have been used effectively in smaller
(distal brachial/forearm and tibial) vessels. Outcomes of extremity vascular injury managed with temporary shunts have been recorded, demonstrating no adverse effect of this technique and a limb salvage advantage in the most severely injured limbs (Mangled Extremity Severity Score [MESS] ≥8).

♦ Consider distal fasciotomies.

Pediatric vascular injuries.

- Pearls:

 ♦ Less than 10 years old: intervention should be avoided in those given a propensity for spasm.

 ♦ Ligation is more well tolerated in infants and toddlers, given the ability to recruit collaterals.

 ♦ Perform interrupted suture lines (6-0 PROLENE) to allow expansion with growth of the child.

Endovascular capability and inferior vena cava filters.

- Pearls:

 ♦ Techniques should be used in a small subset of injuries and directed in consultation with a trauma surgeon.

 ♦ Placement of vena cava filters should be considered in patients who have contraindications for anticoagulation.

Use of prosthetic graft material.

- Pearls:

 ♦ ePTFE (GORE-TEX) or Dacron used for central torso vascular injuries (aorta, great vessels).

 ♦ Prosthetic conduit acceptable as a last resort in extremities when vein cannot be harvested.

 ♦ If prosthetic used in extremity injury, notify higher levels of care to facilitate surveillance.

Harvesting and use of autologous vein.

- Pearls:

 ♦ If possible, use reversed greater saphenous vein from the uninjured extremity.

 ♦ Expose at saphenofemoral junction or anterior to medial malleolus (consistent locations). Be sure to mark anatomically distal end as “inflow,” ensuring reversal of vein conduit.

 ♦ Introduce 18-gauge plastic vein or metallic olive tip cannula to distend with heparin saline.
Sometimes in the setting of trauma, the vein appears in situ as “too small” or “not adequate” due to vasoconstriction or spasm. Best assessed after hydrodistention.

- **Soft-tissue coverage and anastomotic disruption.**
 - Pearls:
 - Cover vascular repairs with available, viable local tissue (muscle and adipose).
 - If no soft tissue to cover, route grafts out of the zone of injury.
 - Poorly covered vascular anastamosis can “blow out.”
 - Avoid direct placement of negative pressure wound therapy sponge on vascular structures.

If no tissue is available to cover the vascular repair, route an interposition graft out of the zone of injury through another myocutaneous or even subcutaneous path.

- **Anticoagulation.**
 - Pearls:
 - Heparin saline is typically 1,000 U/1 L, although other mixtures with or without papaverine (60 mg/1 L) are acceptable.
 - Systemic anticoagulation is achieved with 50 U/kg of IV heparin with 1,000 units repeated at 1 hour. Repeat doses are not recommended, given the propensity for bleeding in wartime injury.
 - “Regional anticoagulation” is the use of heparin saline flush in the inflow/outflow vessels.

- **Post-op care.**
 - Palpable pulses obtained in the operating room should remain palpable post-op.
 - Pulse changes, even if Doppler signals remain, may indicate graft thrombosis and should be investigated.
 - Consider low-dose heparin as deep vein thrombosis prophylaxis.
 - Use with caution in multiply injured and head-injured patients.
 - Slight elevation of injured extremity improves post-op edema.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 26

Burns

Introduction

Burns sustained during military operations constitute a relatively small, but very real percentage (5%) of combat-related injuries. Even burns to a small surface area can be incapacitating for the casualty and strain the resources of deployed military medical units. It is crucial to remember that burns may represent only one of the casualty’s traumatic injuries, particularly when an explosion is the mechanism of injury. Optimal treatment includes management of homeostatic changes related to the burn and associated traumatic injuries. Resuscitation of the burn casualty is generally the most challenging aspect of care during the first 48 hours following injury, and optimal care requires a concerted effort on the part of all providers involved during the evacuation and treatment process.

Point-of-Injury Care

Key steps in the initial treatment of burn casualties include:

- **Stop the burning process.** Extinguish flames. Move the patient to a safe location. Remove all burned clothing. Safely separate the patient from the power source related to electrical injury. Remove chemical agents using copious amounts of clean water.
- **Provide emergency resuscitative care.** Control hemorrhage and protect airway.
- **Remove all constricting articles.** Remove items such as wristwatches, rings, belts, and boots. Remove all contaminated clothing and equipment.
- **Cover the patient.** Do cover the patient with a clean, dry sheet to minimize further contamination during transit. Place saline-soaked dressings over wounds involving *white phosphorus* to prevent ignition of the phosphorus on contact with air.
- **Protect against hypothermia.** Utilize blanket(s) or other warming devices to mitigate hypothermia. Patients with large surface area burns are at increased risk of hypothermia.
- **Establish IV access.** Through unburned skin if possible, through burned skin if necessary, and secure (sew in) IV lines.
- **Begin resuscitation.** Use lactated Ringer’s (LR) solution or a similar solution, and continue during evacuation.

Primary Survey
Do not be distracted by the burn injury itself! The priorities of management for burn casualties are the same as those for other injured patients, with the addition of burn pathophysiology. The burn may not be the most life-threatening injury.

- The primary survey includes hemorrhage control, airway management with protection of the cervical spine as appropriate, based on the mechanism of injury, diagnosis, management of any breathing dysfunction, and rapid circulatory assessment. In the burn patient, special attention to exposure, removal of materials that may continue to burn the victim, and prevention of hypothermia are very important.

- Inhalation injury may be manifested by stridor, hoarseness, cough, carbonaceous sputum, or dyspnea. Airway obstruction may result from plugging of the endotracheal tube and should be suspected if acute changes in pulmonary status occur.
- Patients who may have sustained inhalation injury should be closely monitored; without intubation if minimally symptomatic.
- Preemptively intubate patients with symptomatic inhalation injury prior to transport.
- Endotracheal and nasogastric tubes should be definitively secured with cloth umbilical tape that can be adjusted based on progression of facial edema. Securing the endotracheal tube to a premolar tooth using stainless steel wire should be considered in patients with facial burns or other facial trauma.

- Airway.
 - Consider cervical spine injury in patients injured in explosions, falls, or by contact with high-voltage electricity.
 - Burns are a “distracting injury,” pain secondary to burns, and the treatment of pain with narcotics may make the clinical diagnosis of spinal injury difficult.

- Breathing.
 - Inhalation injury is not common, but is more common in patients with extensive cutaneous burns, a history of injury in a closed space (eg, building or vehicle), and the presence of facial burns.
 - Patients with major burns and/or inhalation injury require supplemental oxygen, pulse oximetry, chest radiography, and arterial blood gas measurement.
 - Circumferential burns of the chest may prevent effective chest motion; for patients with circumferential full-thickness burns, perform immediate thoracic escharotomy as a life-saving procedure to permit adequate chest excursion (Fig. 26-1).
 - Definitive diagnosis of lower airway injury requires fiberoptic
bronchoscopy.

Fig. 26-1. Dashed lines indicate the preferred sites for escharotomies. Bold lines indicate the importance of extending the incision over involved major joints. Incisions are made through the skin into the underlying subcutaneous fat using a scalpel or electrocautery. For a thoracic escharotomy, begin incision in the midclavicular lines. Continue the incision along the anterior axillary lines down to the level of the costal margin. Extend the incision across the epigastrium as needed. For an extremity escharotomy, make the incision through the eschar along the mid-medial or mid-lateral joint line.

- Carbon monoxide poisoning causes cardiac and neurological symptoms. Patients with carbon monoxide poisoning require 100% oxygen for at least 3 hours or until symptoms resolve.

Circulation.
- Secure all IV catheters and lines with suture or surgical staples; tape will not adhere to burned skin, and circumferential wrapping may lead to severe constriction, edema, and possible vascular compromise.
- Manual blood pressure measurements utilizing a cuff may be inaccurate in patients with burned or edematous extremities; therefore, arterial blood pressure is preferred when possible.

Estimation of Fluid Resuscitation Needs for Adults

Initiate resuscitation with lactated Ringer’s based on the patient’s burn size. Utilize urine output as the primary index of adequacy of resuscitation (see below). It is equally important to avoid both overresuscitation and underresuscitation.

- **Determine the burn size** based on the Rule of Nines (Fig. 26-2). A patient’s
hand (palm and fingers) is approximately 1% of the total body surface area (TBSA). Only second and third degree burns are included in burn size calculations.

- Overestimation is common and may lead to overresuscitation.

- **Estimate initial hourly rate for crystalloid resuscitation utilizing the Rule of Tens** and adjust hourly based on response.

 \[
 \text{Initial Hourly Rate} = \%\text{TBSA Burn} \times 10 \text{ mL/h}
 \]

 Example: 40% TBSA Burn

 Initial Hourly Rate of Lactated Ringer’s = 400 mL/h

- **Any formula-based calculation is only an initial estimate of fluid needs.** Patients weighing more than 80 kg or with inhalation injury, predominantly full-thickness burns, and a delay in resuscitation will have higher fluid requirements. The rate of infusion of LR must be adjusted based on physiological response, primarily urine output. Avoid abrupt changes in rate of infusion; **avoid bolus infusion of crystalloids.** Increase or decrease infusion rate by approximately 25% of current rate as needed, based on response.

- For patients weighing >80 kg, add 100 mL/h for each 10 kg above 80 kg. However, remember to adjust based on monitored response in urine output. If LR is not available, use other crystalloids such as normal saline. If crystalloid supplies are severely limited, consider starting colloid as early as 12 hours after injury. Resuscitation requires close monitoring of urine output.

![Fig. 26-2. Rule of Nines showing the distribution of body surface area by anatomical part in the adult.](image-url)
Fluid Resuscitation for Children With Burns

- Fluid resuscitation for pediatric patients with burns involving 20% or more TBSA may be initiated using the Modified Brooke formula (2 mL/kg × %TBSA burn × weight [kg] administered over 24 hours with ½ administered in the first 8 hours) and adjusted based on response as measured by glucose-negative urine output, targeted at 1 mL/kg/h. As with adult patients, frequent monitoring and individual titration are essential.
- Peripheral or intraosseous access may suffice initially; however, central venous access is more reliable and usually required for fluid resuscitation.
- Children with burns over 20% TBSA should have a Foley-type catheter placed (size 6 Fr catheter for infants and size 8 Fr catheter for older children); diapers may be weighed to account for urine output if Foley is not available.
- Children with burns under 20% TBSA or those presenting for care 24–48 hours after injury generally do not require a formal fluid resuscitation, rather fluid should be administered based on clinical need.
- Children may be provided oral nutrition/hydration if they are able to safely tolerate it; however, gastric decompression with a nasogastric tube during the resuscitation phase must also be considered. Stress ulcer prophylaxis is essential.
- Resuscitation targets include an alert sensorium, full peripheral pulses, and warm distal extremities.
- Serum sodium should be monitored every 8 hours during the first 72 hours if burns are >20%. Hypotonic resuscitation fluid should be avoided.

Monitoring the Burn Patient

- Two IV catheters, a Foley catheter, continuous ECG, pulse oximetry, a core thermometer, and a nasogastric tube are needed for ICU care of a patient with burns of 20% TBSA or greater.
- Vital signs and fluid input/output should be accurately recorded hourly on a flow sheet.
- Nasogastric decompression is essential for all patients with burns over 20% TBSA, due to potential gastric ileus.
- Placement of a Foley-type catheter is an essential part of the resuscitation process. Even full-thickness burns to the glans or penis itself should not prevent intubation of the urinary meatus. Debridement of eschar and use of a small hemostat may be necessary to facilitate urinary catheter placement. Suprapubic catheter placement is rarely, if ever, necessary because of perineal burns and should be avoided, especially if the patient has burns to the abdomen.

Secondary Survey

- Perform a thorough head-to-toe secondary survey, looking for nonthermal injuries, to include fractures, dislocations, corneal abrasions, and/or tympanic membrane rupture.
• Ocular examination for corneal laceration and/or globe trauma should be performed early before resuscitation-related edema makes examination more difficult.
• If there is a question of intraabdominal injury, diagnostic peritoneal aspiration, through burned skin if necessary, is appropriate.

Burn Resuscitation—First 24 Hours

Continuous reassess the patient’s hourly urine output, which is the single most reliable indicator of the adequacy of resuscitation.

• Target a urine output of 30–50 mL/h in adults or 1 mL/kg/h in children. If urine output is less than the target for 1–2 consecutive hours, increase the LR infusion rate by about 25%; if the response is greater than the target, decrease rate by about 25%.
• Avoid overresuscitation, which may lead to edema-related complications (eg, compartment syndrome and pulmonary edema).
• Other indices of effective resuscitation include a decreasing base deficit, improved tachycardia (a heart rate of 100–130 is expected in adult burn patients), and an improving or normal mental status.
• The use of diuretics is rarely, if ever, indicated in the treatment of burn shock, except when gross pigimenturia is present (see below).
• Glycosuria is common following severe thermal injury and may cause hypovolemia secondary to osmotic diuresis. Check the urine for glucose and treat hyperglycemia with IV insulin as needed.

Burn Resuscitation—Second 24 Hours

At the end of the first 24 hours postburn, decrease use of crystalloid lactated Ringer’s and implement use of 5% albumin in normal saline.

• Calculation of 24-hour albumin volume is as follows:

\[
5\% \text{ albumin volume} = (*\text{mL}) \times (%\text{TBSA burned}) \times (\text{preburn weight, kg})
\]

<table>
<thead>
<tr>
<th>%TBSA burn</th>
<th>30–49</th>
<th>50–69</th>
<th>70+</th>
</tr>
</thead>
<tbody>
<tr>
<td>*mL</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

For example, in a burn of approximately 40% in an 80-kg patient:

\[
\begin{align*}
\text{Albumin volume} &= (*\text{mL}) \times (40\%) \times (80 \text{ kg}) \\
&= (0.3) \times (3,200) \\
&= 960 \text{ mL/24 h} \\
&= 40 \text{ mL/h}.
\end{align*}
\]

• Burns <30% TBSA generally do not require infusion of colloid solution.
• It is rarely necessary to adjust the colloid infusion rate.
• If albumin is not available, fresh frozen plasma or synthetic colloid can be
used at the same rate used for 5% albumin. If none of these are available, continue utilizing LR while monitoring urine output.

- **Monitor electrolytes.** Burn resuscitation is usually complete by 48 hours after burn injury. However, evaporative water loss replacement is required. Be watchful for both hypo- or hypernatremia!

- **Document and communicate.** Accurately document all fluid volumes administered to the patient and communicate this information to providers as the patient is transferred between levels of care. Utilization of the Joint Theater Trauma System (JTTS) Burn Resuscitation Flowsheet is strongly encouraged and demonstrated to improve outcomes following severe burns. Early communication with the burn center is also encouraged.

Burn Wound Care

- The burn wound itself is not immediately life-threatening. However, adequate wound care reduces the risk of infection, which remains the primary complication in burn casualties. Early care of the burn wound should be performed in a clean and warm environment where adequate sedation and analgesia are available.

Early burn wound care includes adequate IV pain management, removal of foreign materials, debridement, cleansing with antibacterial soap, and application of a topical antimicrobial dressing.

- Adequate wound care requires adequate pain control. Small, intermittent boluses of IV morphine or fentanyl are effective for basal pain control. Ketamine, 1 mg/kg IV, is effective for painful wound care.
- Prophylactic antibiotics are generally not recommended for burn wounds alone. However, other wounds—such as open fractures, facial injuries, or intraabdominal injuries—may justify use of IV antibiotics and are not contraindicated by the presence of the burn injury.
- Apply a topical antimicrobial agent twice daily after thorough cleansing with a surgical detergent such as chlorhexidine gluconate (Hibiclens).
- Use of silver nylon dressings:
 - Burns may be dressed in pliable silver nylon dressings, which provide effective antimicrobial coverage by releasing silver ions. They require a slightly moist environment to remain effective. They should be wrapped with a layer of sterile gauze (KERLIX) and moistened with water to maintain a damp environment. Avoid oversaturation leading to possible hypothermia.
 - Silver nylon dressings may be left in place for extended periods (48–72 hours), which may offer an advantage during transport.
- Use of topical antimicrobial solution or creams:
 - Aqueous mafenide acetate (Sulfamylon) 5% solution may be prepared and used to moisten sterile gauze and wrapped or laid on burn wounds. Sulfamylon 5% solution should be applied to the dressings approximately every 8 hours to maintain moisture in the dressings.
1% silver sulfadiazine (Silvadene), and/or 11.1% mafenide acetate (Sulfamylon), burn creams may be used. They are applied as a thick layer (1/16 to 1/8 inch thick) on the burn and wrapped with sterile gauze. During the period of active wound exudation, it is helpful to place bulky dressings beneath the burned parts to absorb the exudate. Burn cream should be reapplied to open burns as often as needed to keep them covered.

Burn patients must be adequately immunized against tetanus.

- Definitive burn surgery in the combat zone is not advised for patients who can be evacuated to a definitive burn care facility.
- Prevent thermal stress by keeping the environment as warm as possible (>85°F).
- Corneal abrasions in burn patients can lead to full-thickness ulceration and blindness, and require aggressive treatment with antibiotic ointments, preferably gentamicin or a quinolone every 4 hours, alternating with erythromycin every 4 hours.
- Ear burns are prone to chondritis. Avoid placing ties across the ears and apply Sulfamylon cream to burns involving the ear because it will provide better penetration.
- It is common for patients to develop a sterile, chemical cellulitis, manifested by an erythematous rim of normal tissue extending 1–2 cm around the wound margin. **Erythema extending beyond this margin, with other clinical evidence of infection, likely represents beta-hemolytic streptococcal cellulitis.** Consider early use of vancomycin. Treat with appropriate IV antibiotics.
- Invasive gram-negative burn wound infection is heralded by striking changes in the color of the burn wound and a clinical course consistent with sepsis.
 - Antibiotic treatment with an aminoglycoside and a semisynthetic antipseudomonal penicillin is recommended. Apply Sulfamylon cream BID and plan urgent evacuation, if available.
 - Consider subeschar clysis (injection via a spinal needle) with the daily dose of an antipseudomonal penicillin (ticarcillin, piperacillin) in a suitable volume of crystalloid solution (eg, 500 mL). This is done at the time of diagnosis and then immediately prior to excision to fascia.

Daily inspection of the burn wound by a surgeon is essential to identify early infection complications.

Extremity Care
- Carefully monitor the extremities throughout the resuscitation period. Management of the burned extremity can be summarized as follows:
 - Elevate.
 - Exercise burned extremities hourly.
- Evaluate pulses and neurological status hourly.
- Perform escharotomy as indicated.

In extremities with full thickness, circumferential burns, and edema formation beneath the inelastic eschar may gradually constrict the venous outflow and, ultimately, arterial inflow. Adequate perfusion must be assessed hourly during resuscitation.

![Progressive diminution of audible arterial flow by Doppler is a primary indication for escharotomy. Doppler flow should be sought in the palmar arch, not the wrist.]

- Pulses may be difficult to palpate in edematous, burned extremities. However, **in the absence of a Doppler flowmeter, and in the appropriate clinical setting, loss of palpable pulses may indicate a need for escharotomy.**
- Patients requiring escharotomy often present with a tight and edematous extremity. They may have progressive neurological dysfunction, such as unrelenting deep tissue pain or paresthesias, and/or distal cyanosis.
- Prior to prolonged transport, strongly consider prophylactic escharotomy.
- Note that loss of the palmar arch Doppler signal, in the presence of adequate radial and ulnar pulses, is an indication for dorsal hand escharotomies. These are performed over the dorsal interossei. Digital escharotomies may be useful in some cases.
- **Following escharotomy, document restoration of normal pulses and continue to monitor the patient.** If one incision fails to restore pulses, make a second incision on the other side of the limb.

- After escharotomy, cover wounds, including the escharotomy incisions, in burn cream.
- The patient may still develop a true intramuscular, subfascial compartment syndrome requiring fasciotomy.
- Fractures associated with thermal injury are ideally treated with external fixation to permit exposure of the burns and their treatment with topical antimicrobial agents. Plaster, if used, should be bivalved immediately to permit access for wound care and to accommodate edema of the burned limb.

Other Considerations

- Burn patients manifest a hypermetabolic state, with hyperthermia, tachycardia, and hypercatabolism, which may be difficult to distinguish from early sepsis.
- Stress ulcer prophylaxis with IV medication is crucial during the early phases of treatment following severe burns.
- Implement early enteral nutrition once the patient is hemodynamically stable, generally between 24 and 48 hours postburn.
- Respiratory care.
 - About 1 week after injury, patients with subglottic inhalation injury
may develop casts composed of blood, mucous, and debris. Inhaled heparin sodium, at a dose of 10,000 units, may be given by nebulization every 4 hours to prevent the formation of casts and help prevent potentially life-threatening obstruction of endotracheal or tracheostomy tubes.

- **Subglottic inhalation injury may persist longer than clinically evident. Extubation must be performed with caution after adequate airway assessment.**

- Patients with large burns are at risk for abdominal compartment syndrome, which is best avoided through judicious resuscitation, avoiding overresuscitation.

Electrical Injury

- High-voltage electrical injury (>1,000 volts) causes muscular damage that often is much greater in extent than the overlying cutaneous injury.
- Examine the extremities for compartment syndrome and perform urgent fasciotomy as needed.
- Gross pigmenturia (myoglobinuria) may result, and fluid resuscitation must be modified to protect against renal injury.
 - Pigmenturia is diagnosed by reddish-brownish urine, with a dipstick test that is positive for blood, but with insignificant numbers of red blood cells on microscopy.
 - Increase the hourly LR rate until a urine output of 100 mL/h is achieved.
 - If increasing hydration fails to result in a progressive clearing of the urinary pigmenturia over a period of 3–4 hours, add 12.5 g mannitol to each liter of LR infused.
 - Infusion of sodium bicarbonate in water (150 mEq/L) to alkalinize the urine may be useful.
- Hyperkalemia may occur as a result of rhabdomyolysis, and must be carefully assessed and treated with calcium gluconate infusion, insulin, and glucose.
- Surgical debridement of nonviable muscle is the definitive treatment of myoglobinuria.

Chemical Burns

- Initial treatment requires immediate removal of the offending agent.
 - Brush any dry materials off the skin surface before implementing
lavage with copious amounts of water.
- In the case of alkali burns, lavage may need to be continued for several hours.
- Resuscitate and manage chemical burns just as you would a thermal burn.

White Phosphorus Burns
- Most of the cutaneous injury resulting from phosphorus burns is due to the ignition of clothing and is treated as a conventional burn.
- Fragments of this metal, which ignite on contact with the air, may be driven into the soft tissues.
- First-aid treatment of casualties with imbedded phosphorus particles includes **copious water irrigation and placement of a saline-soaked dressing that must be kept continuously wet.**
- Profound hypocalcemia and hyperphosphatemia have been described as effects of white phosphorus injury. Treat with IV calcium.
- Rapid surgical removal of the identifiable particles should be performed; a UV lamp can be used to help locate particles.
 - A dilute (1%), freshly mixed solution of copper sulfate has been used to help identify white phosphorus particles. However, this is no longer recommended because, if the solution is absorbed, it can cause severe hemolysis. If it is used, immediately wash it off with copious saline irrigation; do not apply it as a wet dressing.
- Liberally apply topical antimicrobial burn creams postoperatively.

Triage Considerations
Application of optimal care currently results in survival of approximately 50% of young adults whose burns involve 80% of the TBSA or greater. However, treatment options in a battlefield triage situation may be less than optimal, and expectant care may be considered for patients with burns that exceed 80% TBSA when resources are limited. Expectant status (comfort care) should not be implemented based solely on the severity of injury alone, and resuscitation should be implemented for all burn patients, provided resources are available for progressive care, including evacuation to definitive care. Care can be delayed for those patients with burns of 20% or less who are otherwise thermodynamically stable.

Care of Local National Burn Patients
- Treatment of local national patients with burns is frequently encountered by deployed medical units. The basic tenants of burn care apply to any population. However, decisions regarding futility may arise based on the resources available both at the field facility and among civilian facilities within the region. The inability to evacuate patients for any further definitive care may preclude initiation of aggressive resuscitative or operative interventions and warrant early transition to comfort care.
measures if there is no potential for evacuation for definitive care.

- **REMEMBER**: Definitive care of burn patients is resource-intensive and affects personnel, supplies, operating room availability, and the blood bank. Careful planning and staging of operations are essential.
- Graft failure enlarges the overall wound burden. Protection of the healing donor site(s) is also crucial. Likewise, it is very important to utilize all donor sites efficiently, including the scalp.

Summary

- Burn patients must be evaluated as trauma patients, searching for other injuries that may be more immediately life-threatening than the burn itself.
- Patients with burns involving 20% or more of the TBSA generally require a formal fluid resuscitation and close monitoring.
- The Rule of Tens provides a simplified means of estimating the initial hourly fluid resuscitation rate.
- Placement of a Foley catheter and close monitoring of urine output are essential parts of the resuscitation process.
- Both under- and overresuscitation are associated with undesired effects that must be avoided to achieve optimal outcomes.
- In most situations, the key factor affecting whether or not a patient’s burns are deemed so severe as to warrant implementing comfort care measures is not the extent of burn alone, but rather the availability and access to definitive care, including long-range evacuation if necessary.
- Early communication and consultation with staff at the burn center are encouraged; early discussion of management and transport options ensures optimal coordination along the continuum of care.
- Consultation may be obtained 24/7/365 by calling the US Army Institute of Surgical Research (USAISR) Burn Center at Fort Sam Houston, Texas, at (210) 222-BURN (2876) or via email at: burntrauma.consult@us.army.mil.
- Updated Clinical Practice Guidelines (CPGs) related to burn trauma may be found at the USAISR public website under the heading for JTTS CPGs.

For Clinical Practice Guidelines, go to
Chapter 27

Environmental Injuries

Introduction

The successful prevention and control of cold, heat, and altitude injuries depend on vigorous command interest, the provision of adequate clothing, and a number of individual and group measures. The medical officer must ensure that he or she understands how military duties impact the occurrence and severity of environmental conditions, and advise the commander on preventive measures.

Cold Injuries

Trench foot and frostbite together have accounted for more than 1 million US casualties in World War I, World War II, and the Korean War. Influencing factors include previous cold injury, fatigue, concomitant injury resulting in significant blood loss or shock, geographic origin, nutrition, tobacco use, activity, drugs and medication, alcohol, duration and exposure, dehydration, environment (temperature, humidity, precipitation, and wind), and clothing.

Nonfreezing Cold Injury

- Chilblains.
 - Results from intermittent exposure to temperatures above freezing, usually accompanied by high humidity and moisture; 1–6 hours of exposure.
 - Swelling, tingling pain, and numbness, with pink-to-red flushing of the skin (especially the fingers).
 - Extremities will be pruritic as they warm up.
 - Symptoms usually subside overnight; some superficial scaling may occur.
 - Mild joint stiffness may occur acutely, but subsides in a few hours.
 - No permanent damage occurs.

- Pernio.
 - Continuum of events from chilblains.
 - Exposure for >12 hours to cold and/or wet conditions.
 - Tight-fitting footwear can shorten exposure time and increase severity of injury.
 - Swelling is more severe; pain is more persistent than with chilblains.
 - Thin, partial-skin thickness and necrotic patches (from the dorsum of the hands or feet).
- Plaques may slough without scarring, but may be particularly painful for months or years.

Trench foot.

- Epidemiology/clinical appearance.
 - Occurs from prolonged exposure to cold, wet conditions, or prolonged immersion of feet at temperatures as high as 17°C for >12 hours. Shorter duration at or near 0°C results in the same injury.
 - Occurs in nonfreezing temperatures 0°C–12°C.
 - Can occur at higher temperatures from prolonged water immersion.
 - Blunt trauma of marching can produce more serious injury.
 - First symptom is often the feet becoming cold, mildly painful, and numb.
 - Tight footwear increases risk of trench foot.
 - Common symptoms are “cold and numbness” or “walking on wood.”
 - Foot may appear swollen, with the skin mildly blue, red, or black.
 - Limb is hot and often hyperhidrotic.
 - On rewarming, pain is excruciating and does not respond to pain medication, including morphine.
 - As time progresses, liquefaction necrosis occurs distally, but more proximal tissue may also be compromised.
 - No sharp line of demarcation of dead tissue from viable tissue.
 - Nerve, muscle, and endothelial cells are most susceptible to this long-term cooling.
 - Microvascular vasospasm with tissue ischemia is the apparent etiology of trench foot.
 - Postinjury sequelae include pain, numbness, loss of proprioception, and cold feet. Hyperhidrosis with subsequent paronychial fungal infections are common.
 - Lifelong, life-changing injury.

- Treatment.
 - Prevent further cold exposure.
 - Do not massage.
 - Dry extremity, warm torso, and allow slow passive rewarming of
feet. **Never immerse feet in warm or hot water.**

- Elevate feet.
- Rehydrate.
- If vesicles develop, do not debride.
- Pain medication: The only effective approach is amitriptyline 50–150 mg at bedtime. Other analgesics are either completely ineffective or (as with narcotics) do not actually relieve pain.
- Blisters should be left intact; ruptured blisters require meticulous antisepsis after unroofing.
- Systemic antibiotics and tetanus prophylaxis are indicated when there are nonviable tissues, as with any other contaminated wound, or when there is evidence of infection.
- Debridement of necrotic tissue may be required in trench foot.
- Macerated or damaged skin requires topical antibacterial precautions.
- Avoid trauma.
- Early mobilization is vital to prevent long-term immobility.
- Recovery is protracted and may require evacuation because trench foot may lead to weeks and months of pain and disability.
- Long-term sequelae are very common and include sensitivity to the cold (secondary Raynaud’s phenomenon), chronic pain, neurological impairment, and hyperhidrosis.

- **Frostnip.**
 - Exposed skin appears red or minimally swollen.
 - Tissue is not actually damaged.
 - Not true frostbite; freezing is limited to skin surface only.
 - Signals imminent likelihood of frostbite developing.
 - Resolves quickly with warming.

- **Frostbite.**
 - Results from crystallization of water in the skin and adjacent tissues exposed to temperatures below freezing.
 - Depth and severity of injury are a function of temperature and duration—the lower the temperature, the shorter the time required to produce injury.
 - At low temperatures, in the presence of wind, exposed skin can freeze within a few seconds—starts distally and progresses up the finger or toe.
 - Freeze front (line where the ice is formed in the tissues) is where liquefaction and necrosis occur. Tissues immediately proximal to this
line may also die, but therapeutic modalities are directed at improving their survival.

- Clinical appearance.
 - Skin initially becomes numb and feels stiff or woody.
 - Mottled, bluish, yellowish, “waxy,” or “frozen.”
 - Depth of involvement may be difficult to determine until demarcation occurs, which may take an extended period.

- Frostbite grading.
 - Classification into degrees is primarily a retrospective evaluation and has little treatment value.
 - A more clinically useful grading typically divides injuries into superficial or deep.
 - Superficial frostbite.
 - Involves only the skin with swelling, mild pain, and minor joint stiffness.
 - No blisters form.
 - Nonmedical personnel can manage simply by rewarming.
 - Deep frostbite.
 - Involves deeper tissues to include bone.
 - White-hard, anesthetic, blanched, and inflexible.
 - Skin will not move over joints.
 - On rewarming, there is great pain and a blue-gray-to-burgundy color change.
 - Blisters form and are clear, fluid-filled, or hemorrhagic (the latter indicates a more severe, deeper injury). They should be left in place; will slough in 7–10 days without consequence.
 - Failure to form vesicles in an obviously deep-frozen extremity is a grave sign.
 - Postinjury sequelae include Raynaud’s phenomenon; pain; paresthesias; hyperhidrosis; loss of proprioception; cold, discolored feet; and gait modification.

- **Field treatment (first-aid).**
 - Superficial (blanched cheeks, nose, ears, fingertips).
 - Warm with palm of hand or use warm, wet cloth; warm fingers in armpits.
Emollients may help prevent skin from drying or cracking.
Do not massage, rub with snow, or warm body part by an open fire or high-heat source.
Meticulous skin care is required.

- Deep frostbite.
 - Prevent further cooling of body part, as well as the patient as a whole.
 - Apply dry, sterile bandage and elevate involved extremity.
 - Protect from refreezing during evacuation.
 - Evacuate promptly to definitive medical care.

Avoid thawing and refreezing; this leads to the greatest damage to tissue and the poorest outcome.

- Medical treatment facility.
 - The outcome of a frozen extremity is not directly related to length of time frozen, but more importantly to the method of rewarming and any subsequent refreezing.
 - If the soldier will again be at risk for refreezing, no attempt at rewarming should be initiated; the soldier should ambulate on the frozen extremities until he or she reaches definitive care.
 - For transport, the patient’s extremity should be splinted, padded with dry dressings, and protected from heat sources that would slowly rewarm the extremity.
 - Rapid rewarming (without the possibility of refreezing) is the treatment of choice.
 - Immerse in gently circulating water (whirlpool bath) at 40°C (104°F) for at least 30 minutes longer than would be needed to defrost all affected tissues. If deep freezing of the leg or arm has taken place, thorough surgical fasciotomy is mandatory prior to rewarming to prevent compartment syndrome subsequent to the reperfusion of thawing tissue. Extremities are rewarmed until pliable and erythematous at the most distal areas.
 - Twice daily whirlpool baths at 40°C with topical antibacterial added to the water, together with oral ethanol. The alcohol reduces the need for analgesia and may improve outcome. Other drug regimens remain unproven.
 - After rewarming, edema will appear within a few hours and vesicles form within the next 6–24 hours.
Intensive mobilization is essential to avoid long-term immobility.

- Vesicles.
 - Frostbite vesicles are typically left intact.
 - Debridement is not recommended. Early surgery is only indicated in severely infected cases. Normally, surgery should be delayed for at least 6 months.

- General considerations.
 - Ibuprofen or Ketorolact should be given as systemic thromboxane/prostaglandin inhibitors.
 - Systemic antibiotics and tetanus prophylaxis are indicated when there are dead tissues, as with any other contaminated wound, or when there is evidence of infection.
 - Dry, loose dressings may be applied.
 - Cigarette smoking and/or nicotine use are contraindicated during treatment due to their effect on the microvasculature.
 - Daily hydrotherapy is recommended. Pain control with nonsteroidal antiinflammatory drugs and narcotics will be needed.
 - Sequelae include contractures, cold sensitivity, chronic ulceration, arthritis, and hyperhidrosis.
 - Frostbite cases will require prolonged hospital care (9 days on average); therefore, all but those with the most trivial injuries should be evacuated to more definitive care as soon as possible.
 - Early surgery is indicated only in the most severe freeze-thaw-refreeze cases, where massive tissue destruction has taken place, and in some more severely infected cases. Normally, surgery should be delayed for at least 6 months (“freeze in January, operate in July”).

> Due to the inability to reliably predict the outcome in the postthaw period, there is no role for debridement/amputation of necrotic or potentially necrotic tissue in the initial treatment of frostbite.

Hypothermia

Hypothermia is classically defined as whole-body cooling below 35°C. The degree of hypothermia is further defined according to the body’s core temperature and the clinical effects seen in a given temperature range.

- **Causative factors and prevention.**
 - Water immersion.
Rain and wind.

- Prolonged exposure to severe weather without adequate clothing. The insulation effect of clothing is markedly decreased with wetness, which increases the conductive heat loss.
- Stay dry and avoid windy exposure.
- Shivering can provide 5 times the normal metabolic heat production. Exhaustion and glycogen depletion decrease the time of shivering. Compromise of shivering due to inadequate food intake (skipping meals), exhaustion, heavy exercise, alcohol, and drugs increases the threat of hypothermia.

- **Mild hypothermia:** >33°C (>91°F).
 - Shivering, hyperreflexia.
 - Amnesia, dysarthria, poor judgment, ataxia, apathy.
 - Cold diuresis.

- **Moderate hypothermia:** 28°C–33°C (82°F–91°F).
 - Standard hospital thermometers, mercury as well as digital, cannot measure temperatures below 34°C (93°F).
 - Stupor, loss of shivering.
 - Onset of atrial fibrillation and other arrhythmias.
 - Progressive decrease in level of consciousness, respiration, and pupillary reaction; eventual pupil dilation.

- **Severe hypothermia:** <28°C (<82°F).
 - Increased incidence of ventricular fibrillation, which often occurs spontaneously.
 - Loss of motion and reflexes, areflexic at approximately 23°C (72°F).
 - Marked hypotension/bradycardia.

- **Profound hypothermia:** <20°C (<68°F).
 - Asystole.
 - Lowest known adult survival from accidental hypothermia is 13.7°C (56°F).

Treatment

- **Prehospital (field) treatment.**
 - Awake patients.
 - Remove wet clothing; dry and insulate the patient.
 - Give oral sugar solutions to hydrate.
 - Walk out or transport to medical treatment facility. (This should be attempted if it is the only alternative because it is likely to worsen the condition.)
 - Although walking may deepen hypothermia due to the return of peripheral colder blood to the core, adequate prehydration decreases the postexposure cooling.
 - Comatose patients.
Patient should remain horizontal and be handled gently to avoid inducing arrhythmias; do not massage.

IV fluids, warmed to 40°C–42°C, if possible.

Do not use lactated Ringer’s solution because the cold liver cannot metabolize lactate; warm (40°C–42°C [104°F–107.5°F]) D5NS is the fluid of choice.

Remove wet clothes, dry, insulate, and add an outer vapor barrier. Wrap patient in multiple layers of insulation.

Limit active rewarming principally to the body’s center/core only.

- Heated (40°C–45°C), humidified air/oxygen is the method of choice.
- Norwegian personal heater pack (charcoal heater), with warming tube placed into insulation wrap.
- Forced air (Bair Hugger) with rigid chest frame.
- Hot water bottles in groin/axilla.

Intubation and heated ventilation may be performed.

If apneic and asystolic, consider CPR, because the brain may survive longer.

REMEMBER: The patient is not dead until he/she is warm and dead. Continue resuscitation, if possible, until patient has been rewarmed.

- **Medical treatment.**
 - Ventilate; apply CPR if asystolic or in ventricular fibrillation.
 - As the body cools, the peripheral vasculature constricts, causing pooling of cold acidotic blood.
 - Rewarming the periphery of the body rather than the core causes an inrush of this cold acidotic blood into the core, further dropping the core temperature (afterdrop) and worsening cardiac instability.
 - Core rewarming—peritoneal dialysis, thoracic lavage, heated and humidified oxygen, external warm blankets, and warm water torso immersion.
 - For ventricular fibrillation.

- Bretylium tosylate, 10 mg/kg. Bretylium is the only known effective antidefibrillation drug for hypothermia. It remains functional in a cold heart. Other medications have not proven effective.

- Warmed IV (lactate and potassium-free).

- Monitor core temperature via esophageal (preferred) or rectal probes.
• Careful correction of acid–base balance.
• Rewarm core to 32°C (90°F) and attempt cardioversion (360 J). Continue rewarming and repeat. Defibrillate after every 1°C rise in temperature.
• Monitor potassium, glucose, temperature, and pH.
• Major causes of failure to resuscitate include elevating central venous pressure too fast or too early, attempting defibrillation when core temperature is below 32°C, or continuing to rewarm past 33°C when potassium levels are high and pH is low. If serum potassium levels are high, consider the use of intravenous glucose and insulin.
• Avoid other antiarrhythmics and other medications.
• Patients with core temperature (rectal) above 30°C can generally be rewarmed externally in a variety of methods, including warm blankets and warm water torso immersion. Patients below 30°C rectal should be considered more fragile and will often require internal methods of rewarming (ie, warm gastric, colonic, and/or bladder lavage; warm peritoneal lavage dialysis; warm thoracic lavage; and extracorporeal blood rewarming). Lavage fluids should be warmed to 40°C–42°C (104°F–107.5°F).
• Core temperature will continue to drop after the patient is removed from cold exposure. Continued temperature drop can have grave prognostic implication and increases the likelihood of fibrillation. Post-rewarming collapse of an apparently functional heart often leads to a nonresuscitable heart and death.

• **Cardiopulmonary resuscitation.**
 - If the cardiac monitor shows any electrical complexes, check carefully for apical and carotid pulses before initiating CPR. If any pulse—however thready—is present, **DO NOT INITIATE CPR.**

 Trauma patients should be considered to have hypothermia more profound than the core temperature indicates and be warmed more aggressively.

• **Treatment of mild stable hypothermia.**
 - Insulation.
 - Heat lamps.
 - Warmed IV fluids.
 - Warmed forced air (Bair Hugger). Hair dryers have been jury-rigged for this purpose.
 - Consider arteriovenous anastomoses warming.
 - Immerse hand, forearms, feet, and calves in water heated to 44°C–
45°C (111°F–113°F).

- Opens arteriovenous anastomoses in the digits causing increased flow of warmed venous blood to the heart and decreases afterdrop.

- **Treatment of severe hypothermia with hemodynamic instability.**
 - Cardiopulmonary bypass with rewarming, when available, is the ideal technique in this circumstance because it provides core rewarming while ensuring circulatory stability.

Heat Injury

In the military setting, heat illness occurs in otherwise healthy individuals and ranges from mild (heat cramps) to life-threatening (heatstroke). Individuals typically present with exertional heat illness and are hot and sweaty, not hot and dry, as seen in classic heatstroke.

Lack of sweating is not a criterion for heatstroke. Some military casualties of heatstroke have profuse sweating, especially with rapid onset of heatstroke.

Minor heat illnesses include heat cramps and heat exhaustion. Major heat injuries include exertional heat injury, exertional rhabdomyolysis, and heatstroke. The diagnostic categories of heat exhaustion, exertional heat injury, and heatstroke have overlapping features, and should be thought of as different regions on the continuum rather than discrete disorders, each with its own distinct pathogenesis.

- **Heat injury prevention.**
 - Easier to prevent than treat.
 - Occurs most commonly in unacclimatized individuals.

 - Acclimatization to heat requires 7–10 days.
 - Predeployment training in artificially warm environments does aid heat acclimatization.
 - One hour of progressively more difficult exercise sufficient to induce moderate sweating each day will maximize acclimatization. (Regular strenuous exercise sufficient to stimulate sweating and increase body temperature will result in a significant degree of heat acclimation.) Aerobic fitness provides cardiovascular reserve to maintain the extra cardiac output required to sustain thermoregulation, muscular work, and vital organs in the face of heat stress.

 - Utilize published work–rest cycle guides (eg, FM 21-10/MCRP 4-11.1D or *Field Hygiene and Sanitation*) or work–rest cycles tailored to the individual’s physical capacity by direct medical oversight.

 - **Water restriction/discipline leads to increased heat injury and is contraindicated.**

 - Acclimatization does not reduce, and may actually increase, water
requirements.

♦ Service members will, on average, not feel thirsty until 1.5 L (1%–2%) dehydrated.

♦ Fluid intake should be monitored to ensure urine appears dilute. Additionally, soldiers should be monitored for body weight changes and orthostatic blood pressure changes due to hydration.

♦ The gastrointestinal tract can absorb only 1–1.5 L/h.

♦ Daily rehydration should not exceed 12 L/d orally. **Too much hydration can also be dangerous and lead to water intoxication!**

♦ Leaders must reinforce hydration by planning for all aspects of adequate hydration—elimination as well as consumption. (Soldiers may not drink at night to avoid awakening and having to dress to urinate, or soldiers may not drink prior to a convoy because no rest stops are planned.)

♦ MOPP (Mission-Oriented Protective Posture) gear will increase fluid losses and the incidence of heat injuries.

♦ In the first few days of acclimatization, sweat–salt conservation will not be fully developed. Salt depletion is a risk if soldiers are exposed during this time to sufficient heat or work stress to induce high sweating rates (more than several liters/day), particularly if ration consumption is reduced. Salt depletion can be avoided by providing a salt supplement in the form of salted water (0.05%–0.1%). Acclimation should eventually eliminate the need for salt supplementation.

♦ Salt supplements are not routinely required and are only recommended in rare instances where adequate rations are not consumed.

♦ Coincidental illnesses increase heat casualty risk through fever and dehydration. Fever reduces thermoregulatory capacity leading to increased risk, even after clinical evidence of illness has disappeared. Requires increased command supervision and moderate work schedule.

♦ Sunburn and other skin diseases of hot environments reduce the ability of the skin to thermoregulate. Sunburn must be prevented by adequate clothing, shade, and sunscreen. Skin diseases are best prevented by adequate hygiene.

♦ Medications that affect thermoregulatory adaptations and increase risk of heat injury include anticholinergics, antihistamines, diuretics, tricyclic antidepressants, major tranquilizers, stimulants, and beta-blockers.

Despite preventive measures, service members may suffer from heat illness. One case of heat illness is a warning sign that many others are imminent. The most
life-threatening condition is heatstroke. Severity of heat illness depends on the maximum core temperature and duration.

- **Heatstroke.**

 Heatstroke is distinguished from heat exhaustion by the presence of clinically significant tissue injury and/or altered mental status. Degree of injury appears to relate to both the degree of temperature elevation and duration of exposure.

 If heatstroke is suspected and temperature is elevated, cooling should not be delayed to accomplish a diagnostic evaluation. Cooling and evaluation should proceed simultaneously.

 - Clinical presentation.
 - Heatstroke is a true emergency. It involves components of five organ systems: brain, hemostatic, liver, kidneys, and muscles.
 - Encephalopathy ranges from syncope and confusion to seizures or coma with decerebrate rigidity. Profound neuropsychiatric impairments present early and universally in casualties of advanced exertional heatstroke.
 - Coagulopathy: Thermal damage to endothelium, rhabdomyolysis, and direct thermal platelet activation causes intravascular microthrombi. Fibrinolysis is secondarily activated. Hepatic dysfunction and thermal injury to megakaryocytes slow the repletion of clotting factors. Hepatic injury is common. Transaminase enzyme elevation (values 100 or more times the upper normal limit), clotting factor deficiencies, and jaundice (within 24–36 hours of onset) are also present. Transaminase levels may be transient and reversible; but, if they persist for 48 hours, it is indicative of more severe injury. Hypoglycemia is a frequent complication of exertional heatstroke.
 - Renal failure: Myoglobinuria from rhabdomyolysis in exertional heatstroke, acute tubular necrosis due to hypoperfusion, glomerulopathy due to disseminated intravascular coagulation, direct thermal injury, and hyperuricemia.
 - Muscles are often rigid and contracted: Rhabdomyolysis is a frequent acute complication of exertional heatstroke. Acute muscular necrosis releases large quantities of potassium, myoglobin, phosphate, uric acid, and creatine, and sequesters calcium in exposed contractile proteins.

 The patient with heatstroke requires immediate evacuation to medical facilities with intensive care capabilities. Active cooling should be started immediately and continued during evacuation.
Prodromal symptoms include headache, dizziness (lightheadedness), restlessness, weakness, ataxia, confusion, disorientation, drowsiness, irrational or aggressive behavior, syncope, seizures, or coma.

Collapse is a universal feature of heatstroke.

An individual with a core temperature of ≥40ºC (104ºF) and CNS dysfunction that results in delirium, convulsions, or coma has heatstroke.

- Casualties who are **unconscious** and have a core temperature of ≥39ºC (102.2ºF) have heatstroke.
- Core temperature is often lower on arrival at a treatment area.
- Seizures:
 - Occur frequently (>50% of cases) with heatstroke.
 - Hinder cooling efforts.
 - Treat with diazepam 5–10 mg.

Treatment.

- Rapid cooling can reduce heatstroke mortality anywhere from 50% down to 5%. Cooling by spraying cool water over the body and vigorous fanning can be effective, although not as effective as ice water immersion. Any effective means of cooling is acceptable.
- A variety of techniques have been used. Although evaporative cooling is less effective, the ice immersion method may prevent safe cardiac monitoring or rapid resuscitation.
- Cool water immersion (20ºC) with skin massage is the classic technique. It provides rapid cooling. Closely monitor patient for, and prevent, shivering.
- Cooling with cool water-soaked sheets or ice chips and vigorous fanning is highly effective.
- Do not use alcohol in the cooling solution because freezing of the skin can occur.

The goal of treatment is to effect a rapid lowering of the core temperature to 38ºC (101ºF), without inducing shivering.

- Rectal temperature should be closely monitored during cooling. Discontinue cooling efforts when core temperature reaches 38.3ºC (101ºF) to avoid hypothermia.
- Aspirin and acetaminophen should **NOT** be given to casualties of heatstroke.
Aggressive fluid resuscitation is not required. Fluid requirements of 1 L in the first 30 minutes, with an additional 2 L or more in the next 2 hours may be sufficient. Because heatstroke patients are frequently hypoglycemic, the initial fluid should include dextrose (chilled IV fluid is of limited benefit).

- Base further hydration on fluid status/urinary output (Foley required).

- Overhydration can lead to congestive heart failure, cerebral edema, and pulmonary edema in the heat-stressed lung.

- If shivering develops, treat with diazepam (5–10 mg IV) or chlorpromazine (50 mg IV).

- Patients are frequently agitated, combative, or seizing. Diazepam is effective for control and can be administered intravenously, endotracheally, or rectally, but should be used with caution.

- Airway control is essential. Vomiting is common, and endotracheal intubation should be used in any patient with a reduced level of consciousness or otherwise unable to protect the airway. Supplemental oxygen should be provided when available.

- Hypotensive patients who do not respond to saline should receive inotropic support. Careful titrated use of dopamine or dobutamine is reasonable and has the potential added advantage of improving renal perfusion.

- Pulmonary artery wedge pressure monitoring should be used in patients with persistent hemodynamic instability.

- Management of encephalopathy is supportive in nature and is directed at minimizing cerebral edema by avoiding fluid overreplacement and by ensuring hemodynamic, thermal, and metabolic stability. IV mannitol has been used to treat life-threatening cerebral edema, but is questionable unless renal function is adequate and the patient is fully hydrated. The efficacy of dexamethasone for treating heatstroke-induced cerebral edema is not known.

- Complications.

 - Rhabdomyolysis and secondary renal failure due to myoglobinuria and hyperuricemia; hyperkalemia; hypocalcemia; and compartment syndromes due to muscle swelling.

 - Elevated creatine phosphokinase (in the thousands).

 - Administer IV fluid and possibly furosemide to maintain urinary output >50 cc/h. (Assurance of adequate renal perfusion
and urine flow will moderate the nephrotoxic effects of myoglobin and uric acid.)

◊ Hyperkalemia can be managed by K\(^{+}/Na^{+}\) ion exchange resin (Kayexalate) given orally or rectally as an enema. If available, dialysis may occasionally be indicated.

◊ Hypocalcemia does not usually require treatment.

◊ Increasing tenderness or tension in a muscle compartment may represent increasing intracompartmental pressures. Direct measurement of intramuscular pressure or fasciotomy should be considered. Pain and paresthesia from a compartment syndrome may not be present until after permanent damage has occurred.

◆ Alkalinize urine with sodium bicarbonate IV (2 amps NaHCO\(_3\)/L D5W). Management of acute renal failure requires exquisite attention to fluid and electrolyte balance. Uremic metabolic acidosis and hyperkalemia require dialysis for control.

◆ Coagulopathy due to hepatic injury.

◊ Hepatic injury is common, resulting in transaminase enzyme elevation, clotting factor deficiencies, and jaundice. Transaminase levels may be transient and reversible. But, if they persist for 48 hours, then it is indicative of more severe injury.

◊ Worst prothrombin time occurs at 48–72 hours postinjury.

◊ Thrombocytopenia and disseminated intravascular coagulation peak at 18–36 hours postinjury.

◊ Beware of the coagulopathy timeframe when planning evacuation.

◊ Subclinical coagulopathy does not require active management. Clinically significant bleeding is an ominous sign. Treatment is directed at reducing the rate of coagulation and replacement of depleted clotting factors. Intravascular coagulation can be slowed by cautious heparin infusion (5–7 units/kg/h), followed in 2–3 hours by fresh frozen plasma and platelets. Successful management leads to a decline in the indices of fibrinolysis (eg, fibrin split products). Heparin is tapered gradually over 2–3 days as directed by laboratory evidence of control.

◊ Monitor for hypoglycemia or hyperglycemia.

◆ Prognosis is worse in patients with more severe degrees of encephalopathy. Permanent neurological sequelae can develop after heatstroke, including cerebellar ataxia, paresis, seizure disorder, and cognitive dysfunction.
Neurological deterioration after initial recovery may represent intracranial hemorrhage related to diffuse intravascular coagulation or hematoma related to trauma unrecognized at the time of initial presentation.

- Other complications include gastrointestinal bleeding, jaundice, aspiration pneumonia, noncardiogenic pulmonary edema, and myocardial infarction. Immune incompetence and infection are late complications, particularly in patients with severe renal failure.

- Hyperkalemia is the most life-threatening early clinical problem. Measurement of serum potassium is an early priority.

- **Heat cramps.**
 - Clinical presentation.
 - Brief, intermittent, recurring, and often excruciating tonic muscle contractions that last 2–3 minutes. Preceded by palpable or visible fasciculations.
 - Typically involve muscles of the abdomen, legs, and arms (voluntary muscles of the trunk and extremities). Smooth muscle, cardiac muscle, the diaphragm, and bulbar muscles are not involved.
 - Occur often with heat exhaustion. (Despite the salt depletion associated with heat cramps, frank signs and symptoms of heat exhaustion are unusual.)
 - There are no systemic manifestations, except those attributable to pain.
 - Occur in healthy individuals who exercise for prolonged periods in warm environments.
 - Occur in salt-depleted patients, generally during a period of recovery after a period of work in the heat.
 - Differential diagnosis: tetany due to alkalosis (hyperventilation, severe gastroenteritis, cholera), hypocalcemia, strychnine poisoning, black widow spider envenomation, and abdominal colic.
 - Treatment.
 - Mild cases can be treated with oral 0.1%–0.2% salt solutions. Salt tablets should not used as an oral salt source.
 - Most “sports drinks” (diluted 1:1 with water) effective for mild cases.
 - IV normal saline (NS) provides rapid relief in more severe cases.
• Patients with heat cramps usually have substantial salt deficits (15–30 g over 2–3 days, usual dietary intake). These individuals should be allowed 2–3 days to replenish salt and water deficits before returning to work in the heat.

• **Heat exhaustion.**
 - Clinical presentation.
 - Thirst, headache, dyspnea, lightheadedness (orthostatic dizziness), profound physical fatigue, anorexia, confusion, anxiety, agitation, mood change, chills, piloerection, nausea, and vomiting. There is no combination of presenting symptoms and signs that is pathognomonic.
 - Often accompanied by heat cramps.
 - Oliguria, clinical dehydration, ataxia, tachycardia, and tachypnea resulting in symptomatic hyperventilation with acroparesthesia and carpopedal spasm.
 - Syncope may occur.
 - Core temperature is <39°C (102.2°F), even at time of collapse.
 - Treatment.
 - Oral rehydration (if patient is not vomiting).
 - Parenteral fluids produce more rapid recovery: no more than 250 mL NS bolus without laboratory surveillance; after 2.5 L of plain saline, add dextrose as a source of energy (D2.5½ NaCl); subsequent fluid replacement should be D5½ NS or D5¼ NS. Individuals with significant salt depletion have coincident potassium depletion, often amounting to 300–400 mEq of KCl. To begin restoration of potassium deficit, inclusion of potassium in parenteral fluids after volume resuscitation is appropriate if there is no evidence of renal insufficiency or rhabdomyolysis.
 - Does not require active cooling; however, because symptoms are difficult to distinguish from heatstroke, the **safest course** is to provide active cooling for all casualties who are at risk for heatstroke.
 - Removal from hot environment.
 - Stop exercising, move out of the sun.

• **Minor heat illnesses.**
 - Miliaria rubra, miliaria profunda, and anhidrotic heat exhaustion.
 - Subacute (miliaria rubra) pruritic inflamed papulovesicular skin eruption that appears in actively sweating skin exposed to high
humidity. Becomes generalized and prolonged (miliaria profunda); lesions are truncal, noninflamed papular, with less evidence of vesiculation than the lesions of miliaria rubra.

- Each miliarial papulovesicle represents an eccrine sweat gland whose duct is occluded at the level of the epidermal stratum granulosum by inspissated organic debris.
- Eccrine secretions accumulate in the glandular portion of the gland and infiltrate into the surrounding dermis.
- Pruritus is increased with increased sweating.
- Miliarial skin cannot fully participate in thermoregulatory sweating; therefore, the risk of heat illness increases in proportion to the amount of skin surface involved. Sweat does not appear on the surface of affected skin.
- Sleeplessness due to pruritus and secondary infection of occluded glands has systemic effects that further degrade optimal thermoregulation.
- Miliaria is treated by cooling and drying affected skin, avoiding conditions that induce sweating, controlling infection, and relieving pruritus. Eccrine gland function recovers with desquamation of the affected epidermis, which takes 7–10 days.
- Miliaria profunda causes an uncommon, but disabling, disorder: anhidrotic heat exhaustion (or tropical anhidrotic asthenia). Miliaria profunda causes a marked inhibition of thermoregulatory sweating and heat intolerance similar to that of ectodermal dysplasia. That individual is more at risk for heat exhaustion and at high risk of heatstroke in conditions tolerated by others.
- Evacuation to a cooler environment until restoration of normal eccrine gland function.

- Heat-induced syncope.
- Due to a reduced effective blood volume. (Thermal stress increases the risk of classic neurally mediated [vasovagal] syncope by aggravating peripheral pooling of blood in dilated cutaneous vessels.)
- Symptoms range from light-headedness to loss of consciousness.
- Typically someone standing in a hot environment.
- Greatest risk on first day of heat exposure; subsequent risk decreases daily.
- Risk almost 0 after 1 week of heat exposure; however, syncope
occurring during or after work in the heat, or after more than 5 days of heat exposure, should be considered evidence of heat exhaustion.

◦ Core temperature is not elevated or only very minimally so.
◦ Patient regains consciousness immediately after syncope.
◦ Clinical evaluation and management should be directed toward the syncopal episode, not potential heat illness. Treatment is oral hydration and continued acclimatization.

◦ Heat edema.
 ◦ Seen early in heat exposure.
 ◦ Plasma volume expanding to compensate for the increased need for thermoregulatory blood flow.
 ◦ In the absence of other disease, condition is of no clinical significance.
 ◦ Will resolve spontaneously.
 ◦ Diuretic therapy is not appropriate and may increase risk of heat illness.

◦ Sunburn.
 ◦ Reduces thermoregulatory capacity of skin.
 ◦ Systemic effect: hyperthermia.
 ◦ Preventable.
 ◦ Affected soldiers should be kept from significant heat strain until the burn has healed.

◦ Heat tetany.
 ◦ Rare; occurs in individuals acutely exposed to overwhelming heat stress.
 ◦ Extremely severe heat stress induces hyperventilation.
 ◦ Manifestations include respiratory alkalosis, carpopedal spasm, and syncope.
 ◦ Treatment: removal from heat source and control of hyperventilation (rebreathing into paper bag to reverse respiratory alkalosis).
 ◦ Dehydration and salt depletion are not prominent features.

Altitude Illness
Exposure of troops to the hypobaric hypoxia of altitude results in a decrement of
performance, as well as the possible development of altitude illness. Altitude illness spans a spectrum from high-altitude bronchitis, to acute mountain sickness (AMS), to death from high-altitude pulmonary edema (HAPE), and high-altitude cerebral edema (HACE).

- **Altitude basics.**

 The occurrence of altitude illness is based on altitude and rapidity of ascent. Contributory factors include level of exertion, physiological susceptibility, age, and coexisting medical conditions.

 - Physiological changes due to altitude begin to occur at just over 1,500 m (4,900 ft).
 - These changes are the body’s attempt to acclimatize to altitude.
 - Symptoms occurring below 2,250 m (7,400 ft) are rarely due to altitude illness.

 - Rapid ascent to high altitudes results in a high incidence of altitude illness.
 - Climbing Mt. Rainier brings one from sea level to 14,500 ft (4,400 m) in 36 hours and results in a 70% incidence of altitude illness. An ascent to a similar height over the course of 5 days would only result in a 5% incidence of altitude illness.

 - 10%–20% of soldiers who ascend rapidly (<24 hours) to altitudes between 1,800 to 2,500 m (6,000–8,000 ft) experience some mild symptoms.

 - Rapid ascent to elevations of 3,600 to 4,300 m (12,000–14,000 ft) results in moderate symptoms in more than 50% of the soldiers, and 12%–18% may have severe symptoms.

 - Rapid ascent to 5,300 m (17,500 ft) causes severe, incapacitating symptoms in almost all individuals.

- **Descent basics.**

 - Almost everything improves with prompt descent.
 - For illness requiring descent, one should try to descend at least 1,000 m (3,300 ft) if not more.

 - A Gamow bag (USA; a portable fabric hyperbaric chamber) or Certec SA bag (Europe) can temporize a patient if evacuation/descent is not possible.

 - Symptoms typically resolve quickly with descent, but may linger for several days.

 - Victims of HACE and HAPE should not reascend until 72 hours after symptoms abate, and then they must ascend much slower than previously.

 - Victims of HACE or HAPE should descend at the earliest sign, before
they become moribund and incapable of aiding in their own descent.

- **There are no reliable predictors of susceptibility to AMS, except prior experience at altitude.**

| Incidence and severity of symptoms vary with initial altitude, rate of ascent, level of exertion, and individual susceptibility. |

- Vigorous physical activity during ascent or within 24 hours after ascent will increase both the incidence and severity of symptoms.
 - If a soldier became ill previously at a given altitude, he or she will likely become ill at the same altitude unless the ascent is slower to allow for better acclimatization.
 - Physical fitness level has **no effect** on susceptibility to altitude illness.
 - Oral Sildenafil (Viagra) 50 mg qd increases exercise tolerance in healthy volunteers at altitude (5,200 m [17,000 ft]), although it has not been approved for this purpose. The role of this drug in the treatment and/or prophylaxis of AMS and HAPE has not been established.
 - If a rapid ascent to altitude must be made, use prophylaxis against AMS.

- **Acute mountain sickness.**
 - AMS is the most common form of altitude illness.
 - Onset is shortly after arrival at high altitude. Onset occurs 3–24 hours after ascent. Symptoms reach peak severity in 24–72 hours and usually subside over the course of 3–7 days.
 - Further ascent without an acclimation period usually exacerbates symptoms and can result in increased incidence of HAPE and HACE. The majority of AMS cases do not progress to more serious altitude illness without continued ascent.
 - Symptoms.
 - Headache: Symmetric, global in location, and throbbing in character. Most intense during night and shortly after arising in the morning, attributed to increased hypoxemia caused by altitude-induced sleep apnea.
 - Anorexia.
 - Nausea.
 - Fatigue (weakness).
 - General malaise.
 - Decreased coordination.
- Dizziness or light-headedness.
- Oliguria.
- Emesis (vomiting).
- Lassitude.
- Insomnia: Sleep disturbances with periodic breathing with recurrent apneic periods during sleep are usually present, but are not necessarily a component of AMS.

- Diagnosis.
 - Occurrence of a headache and at least one other sign/symptom in an individual who ascended from low (1,524 m or < 5,000 ft) altitude to high altitude, or from high altitude to higher altitude in the previous 24–48 hours.
 - Differential diagnosis includes viral gastroenteritis, hangover, exhaustion, dehydration, carbon monoxide poisoning, and HACE.
 - Presence of neurological symptoms—such as incoordination, ataxia, and excessive lethargy or cognitive dysfunction—is indicative of progression to HACE, which requires immediate therapeutic intervention.

- Prophylaxis for AMS.
 - Gradual acclimation.
 - **Staged ascent:** Soldiers ascend to intermediate altitudes and remain there for three or more days before ascending further.
 - **Graded ascent:** Limits daily altitude gain to allow partial acclimation. Sleep altitude is most important. Have soldiers spend two nights at 2,743 m (9,000 ft) and limit the sleeping altitude to no more than 305 m (1,000 ft) per day above the previous night’s sleep altitude.
 - **Combined staged and graded ascent:** This is the safest and most effective prevention method.
 - Diet: High carbohydrate diet (<70% of total energy intake as carbohydrates); stimulation of ventilation through increased carbon dioxide produced from the metabolism of carbohydrates.
 - Acetazolamide (250 mg qid or 500 mg bid po), starting 48 hours before ascent and continuing for 48 hours after ascent. Side effects include peripheral paresthesias, fatigue, increased urination (polyuria), and altered taste imparted to carbonated beverages. It prevents AMS in 50%–75% of soldiers and reduces symptoms in most others. Short-term use when changing altitude significantly
(400 m). **Contraindicated in sulfa allergy.**

- Dexamethasone (4 mg qid po) is the prophylaxis of choice in sulfa-allergic individuals. Dexamethasone does not aid acclimatization, and effects are gone when it is stopped. Dexamethasone ± acetazolamide is also the prophylaxis of choice for missions of a rapid, high (more than 4,000 m [13,000 ft]), short-duration profile (raids, rescues).

- Cyanosis: Oxygen 2–6 L/min. Do not delay descent.

 - Treatment.
 - AMS alone does NOT mandate descent.
 - Remain at the same elevation; do **not** ascend until symptoms abate.
 - Acetazolamide (250 mg bid to 500 mg tid po)—do not use in patients with sulfa allergies. (If already receiving a preventive dose of acetazolamide [1,000 mg/d] and still symptomatic, 500 mg can be added with caution.) Diuretic effect may exacerbate AMS.
 - Dexamethasone in doses of 2–4 mg q6h (has the same potentially serious side effects as when used as a prophylaxis). Symptoms may recur when medication stopped.
 - Oxygen by nasal cannula 2–6 L/min (severe headache).
 - Do NOT advance sleeping altitude.
 - Symptomatic treatment with acetylsalicylate acid (or aspirin); acetaminophen; prochlorperazine for nausea and vomiting 5–10 mg tid–qid, po, or IM; or 25 mg bid PRN also stimulates respiration; ibuprofen for headache.
 - Minimize utilization of sleeping agents at altitude; they can worsen illness. Acetazolamide for sleep disorders, 250 mg qid or tid po. Temazepam for insomnia, 30 mg qhs po; triazolam for insomnia, 0.125–0.25 mg qhs po. Short-term use only. Possible short-term memory loss.

- **High-altitude pharyngitis and bronchitis.**
 - Common condition occurring after 2–3 weeks at altitude.
 - Common at altitudes over 5,486 m (18,000 ft).
 - Sore throat, chronic cough, and severe cough spasms (severe enough to cause rib fractures).
 - Environmental, from breathing cold dry air.
 - Altitude-induced tachypnea aggravates the problem.
 - Cold-induced vasomotor rhinitis, especially at night, stimulates mouth breathing and also aggravates problem.
 - Usually not caused by infection, although infection can occur.
- Patient will **not** have dyspnea at rest.
- Symptomatic treatment with lozenges, mild cough suppressant, and decongestant nasal sprays. Personnel can use a mask or a porous, breathable silk balaclava as a mouth covering to reduce respiratory heat and moisture loss.
- Maintain hydration.

- **High-altitude peripheral edema.**
 - Altitude-related edema of the hands and face.
 - Hypoxia-induced retention of sodium and water.
 - Not considered related to AMS/HACE edema spectrum or HAPE.
 - Decreased urine output and weight gain of 2.7–5.4 kg (6–12 lbs) over several days; most evident on awakening.
 - Diagnosis based on association of characteristic peripheral edema with ascent to high altitude; recurs consistently with repeat ascents; more common in females.
 - Differential diagnosis includes cardiogenic edema, allergic reactions, and edema of the upper extremities caused by pack straps or binding by tight clothes.
 - Prophylaxis includes salt restriction. The acetazolamide regimen used to prevent AMS is often successful in preventing peripheral edema.
 - Treatment with diuretics (one 20- to 40-mg dose of furosemide or 250 mg of acetazolamide every 8 h for 3 doses) and salt restriction.

- **High-altitude retinal hemorrhage.**
 - Bleeding from retinal vessels during altitude exposure. One of the manifestations of hypoxia-induced retinopathy.
 - Caused by blood pressure “surges” within the distended vessels.
 - Usually asymptomatic; normally does not adversely affect military operations; however, can affect an individual soldier’s vision.
 - Hemorrhages are self-limiting and resolve in 1–2 weeks after descent.

- **Thromboembolic events.**
 - Increased possibility of thromboembolic event with ascent to high altitude: thrombophlebitis, deep venous thrombosis, pulmonary embolus, transient ischemic attacks, and stroke.
 - Probably result from hypoxia-induced polycythemia and clotting abnormalities, but also may result from environmental and mission factors—such as dehydration, cold, and venous stasis caused by prolonged periods of inactivity during inclement weather or by constriction of tight-fitting clothing and equipment.
 - Unusual below 4,267 m (14,000 ft). At very high and extreme altitudes (>4,200 m [13,700 ft]), these events are not uncommon; and thrombophlebitis appears to be relatively common.
 - Clinical manifestations are similar to manifestations of thromboembolic events at low altitude, except for their occurrence in young and otherwise healthy personnel.
- Prevention relies on reducing the risk factors by maintaining adequate hydration and warmth, and by avoiding conditions that might cause venous stasis.
- Evacuation to lower altitude is required. Treatment follows standard treatment guidelines, including appropriate anticoagulation. In the field setting, fractionated heparin (1 dose of 250 IU/d) can be used prior to and during evacuation.

Subacute mountain sickness.
- Prolonged deployment (weeks to months) to elevations above 3,658 m (12,000 ft).
- Common manifestations include sleep disturbances, anorexia, weight loss, fatigue, daytime somnolence, and subnormal mentation.
- Caused by failure to acclimatize adequately.
- Some relief of symptoms obtained from low-flow oxygen and acetazolamide.
- Evacuate to lower altitude as soon as practical.
- Some degree of immune suppression and poor wound healing occurs in personnel at very high and extreme altitudes. Injuries resulting from burns, ballistics, and physical trauma should be considered more clinically significant at high altitude.

High-altitude pulmonary edema.
- Potentially fatal, noncardiogenic pulmonary edema.
- Occurs in <10% of personnel ascending above 3,700 m (12,000 ft).
- Onset 2–4 days after rapid ascent to altitudes greater than 2,438 m (8,000 ft).
- Repeated ascents and descents above 3,700 m (12,000 ft) increase susceptibility.
- Risk factors.
 - Moderate-to-severe exertion.
 - Cold exposure.
 - Anxiety.
 - Young age.
 - Male sex.
 - Obesity (possibly).
- Early symptoms (pulmonary edema).
 - Nonproductive cough.
 - Rales (few).
 - Dyspnea on exertion.
 - Fatigue.
Weakness with decreased tolerance for physical activity and increased time for recovery after physical exertion.

Resting tachycardia and tachypnea greater than induced by altitude alone.

Once symptoms appear, HAPE can progress very rapidly (<12 hours) to coma and death.

Nail beds and lips may be more cyanotic than other unit members.

Progressing pulmonary edema.

Productive cough of frothy and sometimes pink or bloodstained sputum.

Rales more numerous and widespread.

Wheezing may develop.

Lung sounds become audible even without a stethoscope, especially when the individual is supine.

Orthopnea may occur (<20%).

Progressive hypoxemia causes dyspnea and cyanosis.

Arterial blood gas (if available) documents hypoxemia, hypocapnia, and a slight increase in pH.

Mental status deteriorates with progressive confusion and sometimes vivid hallucinations.

Obtundation, coma, and death occur without treatment.

Subfebrile temperature <38°C (100.5°F) and a mild increase in white blood cell count may be present.

Dyspnea at rest.

Marked hypoxia by oximetry.

Dyspnea at rest and cough should be considered to be the onset of HAPE.

Delay in the TREATMENT of progressive pulmonary edema at altitude usually results in DEATH.

Treatment.

Depends on severity.

Immediate descent is mandatory! Descent of even a few hundred meters (300–1,000 m) can be helpful or even lifesaving in severe cases.

Mortality can approach 50% if descent cannot be accomplished.
rapidly.

- Oxygen by cannula 2–6 L/min (mild) or by mask 4–6 L/min (moderate and severe). **DO NOT DELAY DESCENT!**

- Portable fabric hyperbaric chamber may be lifesaving—Gamow bag/Certec SA bag.

- Nifedipine, 10 mg chew + 10 mg swallow immediately, then 10 mg po q4h. If the patient is comatose, pierce the nifedipine capsule and squirt the liquid into the patient’s mouth.

Nifedipine should not be used in lieu of descent, supplemental oxygen, or treatment in a hyperbaric bag. It may be used in conjunction with other therapies.

- Immediate descent to lower elevation; if symptoms resolve, wait at least 72 hours before attempted return to previous elevation.

Neither furosemide nor morphine sulfate should be used in the treatment of HAPE (high-altitude pulmonary edema), unless other, more effective, treatment options are not available.

- Treatment after descent, at a medical treatment facility, is directed toward ensuring adequate oxygenation and reducing pulmonary artery pressure; includes bed rest, supplemental oxygen, and nifedipine.

- Invasive diagnostic procedures, such as bronchoscopy or pulmonary artery catheterization, are **NOT** indicated unless clinical course deteriorates and the diagnosis is in doubt. Endotracheal intubation is seldom necessary.

 - HAPE prophylaxis.

 - Nifedipine, 20 mg tid po, 24 hours before ascent, continuing 72 hours after ascent.

- **High-altitude cerebral edema.**
 - Onset following ascent is highly variable and occurs later than either AMS or HAPE. Mean duration of 5-day onset, with a range of 1–13 days.
 - Incidence lower than AMS or HAPE (<1% of individuals making rapid ascent).
 - Potentially fatal, uncommon (<2% above 3,700 m). Can occur as low as 2,430 m (8,000 ft), but vast majority of cases occur above 3,600 m (12,000 ft). Untreated HACE can progress to death over 1–3 days or become more fulminant with death occurring in <2 hours.
 - Exacerbation of unresolved, severe AMS.
 - **Most often occurs in people who have AMS symptoms and continue to ascend.**
Signs and symptoms.

- Most signs and symptoms are a manifestation of progressive cerebral edema.
- Early signs resemble AMS. (These symptoms are not invariably present.)
 - Severe headache.
 - Nausea.
 - Vomiting.
 - Extreme lassitude.

Progressing signs.

- Mental status changes: Confusion, disorientation, drowsiness, and impaired mentation.
- Truncal ataxia (swaying of upper body, especially when walking). As the edema progresses, soldier may also exhibit an ataxic gait in addition to the truncal ataxia.
- Soldier appears withdrawn, and behavior is mistakenly attributed to fatigue or anxiety.
- Cyanosis and general pallor are common.
- Symptoms of HAPE.

Untreated HACE.

- Variety of focal and generalized neurological abnormalities may develop: visual changes, anesthesias, paresthesias, clonus, pathological reflexes, hyperreflexia, bladder and bowel dysfunction, hallucinations, and seizures.
- Papilledema may be present in up to 50% of the soldiers, but is NOT universal.

Coma.

Ataxia at altitude is HACE (or high-altitude cerebral edema).

Prophylaxis.

No definitive evidence; however, due to similarity with AMS, prophylactic measures for HACE include use of staged or graded ascent, high carbohydrate diet, and use of acetazolamide.

Treatment.

- Immediate descent is mandatory. Definitive treatment of HACE is immediate descent. In general, the greater the descent, the better
the outcome. Descent >300 m (1,000 ft) may be required for clinical improvement, and descents to altitudes of <2,500 m (8,000 ft) are optimal.

- If descent is delayed, treatment with a portable cloth hyperbaric chamber may be lifesaving. May require at least 6 hours of pressurization in chamber.
- Oxygen by mask or cannula 2–6 L/m; should not be used as a substitute for descent.
- Dexamethasone, 4–8 mg initially; then, 4 mg qid, po, IV, or IM. **DO NOT DELAY DESCENT!** Few side effects if used only 3–4 days.

| High-altitude cerebral edema (HACE) and high-altitude pulmonary edema (HAPE) often coexist. Individuals with HACE will often have HAPE; however, most individuals with HAPE do not have concomitant HACE. |
| Loop diuretics and osmotic diuretic agents—such as mannitol, urea, and glycerol—have been suggested, but there is little experience with them in this role. Careful attention is required before diuretics are used. Individual may have altitude-induced decrease in intravascular volume concomitant with cerebral edema. |
| Hospital management consists of supplemental oxygen (if needed to maintain arterial oxygen levels), supportive care, and possibly diuretics. Comatose patients may require intubation and bladder catheterization. |

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 28

Radiological Injuries

The reader is strongly advised to supplement material in this chapter with the following two references:

Introduction

Radiological casualties on the battlefield may occur with improvised or conventional nuclear devices or radiological dispersal devices (“dirty bombs”) (Table 28-1).

- Conventional nuclear weapons.
 - The relative casualty-causing potential depends primarily on four factors:
 - Yield of the weapon.
 - Height of burst.
 - Environmental conditions in which the detonation occurs.
 - Distribution and shielding of troops in the target area.
 - A nuclear detonation generally causes injuries with the following distribution:
 - Blast injury: 50%.
 - Thermal injury: 35%.
 - Ionizing radiation injury.
 - Initial: 5%.
 - Residual: 10%.
- A radiological dispersal device (RDD) is any device—including any weapon or equipment—other than a nuclear explosive device, specifically designed to spread radiation.
- RDDs contaminate conventional casualties with radionuclides, complicating medical evacuation.
- RDDs are ideal weapons for terrorism, and are used to intimidate and deny access to an area by spreading radioactive material.

Table 28-1. Radiological Casualties

<table>
<thead>
<tr>
<th>Weapon Effect</th>
<th>Weapon Yield (kt)/Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kt</td>
</tr>
<tr>
<td>Blast (50% casualties)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 m</td>
</tr>
<tr>
<td>Thermal radiation (50% deep burns)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>370 m</td>
</tr>
<tr>
<td>Ionizing radiation (50% immediate transient ineffectiveness)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 m</td>
</tr>
<tr>
<td>Ionizing radiation (50% lethality)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 m</td>
</tr>
</tbody>
</table>

kt: kiloton; m: meter.

Triage

- Triage should be conducted on traditional surgical and medical considerations, then modified by radiation injury level.
 - Radiation interacts deleteriously with trauma. Patients with medical or traumatic injury who also have whole-body or significant partial-body irradiation have a substantially worse prognosis and will require a higher triage priority.
 - Make a preliminary diagnosis of radiation injury only for those with exposure symptoms, such as nausea, vomiting, diarrhea, fever, ataxia, seizures, prostration, and hypotension.
 - Radiation patient triage classifications.

- **Immediate:** Those requiring immediate lifesaving intervention. Pure radiation injury is not acutely life-threatening unless the irradiation is massive. If a massive dose has been received, the patient is classified as expectant.
- **Delayed:** Casualties with only radiation injury, without gross neurological symptoms (ataxia, seizures, and impaired cognition). For trauma combined with radiation injury, all surgical procedures must be completed within 36–48 hours of radiation exposure, or delayed until at least 2 months after the injury.
- **Minimal:** Buddy care is particularly useful here. Casualties with radiological injury should have all wounds and lacerations meticulously cleaned and then closed.
Expectant: Receive appropriate supportive treatment compatible with resources; large doses of analgesics as needed.

- Table 28-2 provides medical aspects of radiation injuries.

Table 28-2. Medical Aspects of Radiation Injuries

<table>
<thead>
<tr>
<th>Probability/degree of exposure</th>
<th>Signs and Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlikely</td>
<td>Nausea - Vomiting + Diarrhea +/– Hyperthermia</td>
</tr>
<tr>
<td>Probable</td>
<td>+ +/– +/- –</td>
</tr>
<tr>
<td>Severe</td>
<td>+++ +++ +/+++ +/+++ –/+ –/+ –/++</td>
</tr>
</tbody>
</table>

CNS: central nervous system.

- The lethal dose (LD) of radiation, which will kill 50% of a population within 60 days of exposure, is called LD\(_{50/60}\). The LD\(_{50/60}\) is approximately 3–4 Gy for a population with radiation injury alone and with no significant medical care. The LD\(_{50/60}\) for a population with radiation injury alone and the best available medical care (including antiemetics, antivirals, antibiotics, hematopoietic cytokines, and transfusion) may be 6 Gy or more. Combined injuries with radiation and trauma and/or burns will markedly lower the LD\(_{50}\).
- Significant medical care may be required at 3–5 weeks for 10%–50% of personnel. Anticipated problems should include infection, bleeding, fever, vomiting, and diarrhea. Wounding or burns will markedly increase morbidity and mortality.
- Treatment.
 - Fluid and electrolytes for gastrointestinal losses.
 - Cytokines for immunocompromised patients (follow granulocyte counts).
 - Restricted duty. No further radiation exposure, elective surgery, or wounding. May require delayed evacuation from theater during nuclear war in accordance with command guidance.
 - If there are more than \(1.7 \times 10^9\) lymphocytes per liter, 48 hours after exposure, it is unlikely that an individual has received a fatal dose.
 - Patients with low (300–500) or decreasing lymphocyte counts, or low granulocyte counts, should be considered for cytokine therapy and biological dosimetry using metaphase analysis where available.
- Asymptomatic patients with lethal radiation dose may perform usual duties until symptomatic.

Potential Injuries
- **Thermal/flash burns** or thermal pulse burns are caused directly by infrared radiation. Close to the fireball, the thermal output is often so great that everything is incinerated, and even at great distances, thermal/flash burns will occur (see Chapter 26, Burns, for management).
 - Burn mortality rates associated with radiation exposure are significantly higher due to bone marrow suppression and infection (a 50% total body surface area burn associated with radiation exposure has a mortality of 90%).
- **Blast injuries** associated with a nuclear detonation include:
 - Direct blast wave overpressure forces measured in terms of atmosphere overpressure.
 - Indirect blast wind drag forces, measured in terms of wind velocity, which may displace large objects (eg, vehicles or cause the collapse of buildings).
- **Radiation injuries** are due to ionizing radiation released both at the time of the nuclear detonation and for a considerable time afterward. The two types of radiation released are electromagnetic (gamma) radiation and particulate (alpha, beta, and neutron) radiation.
 - Alpha particles can be shielded against by clothing.
 - Beta particles shielding requires solid materials, like a wall.
 - Gamma and neutron radiation are the most biologically active and require lead equivalent shielding for protection.
 - Fission products are the major radiation hazard in fallout because a large number emit penetrating gamma radiation. This can result in injuries, even at great distances.
 - Fallout causes whole-body irradiation from gamma-emitting isotopes because they do not actually have to be on a person’s skin to cause damage.
- **Flash blindness** may occur as the result of a sudden peripheral visual observation of a brilliant flash of intense light energy. **Retinal burns** may also occur, and result in scarring and permanent altered visual acuity.

Treatment of Combined Injuries

- Following the detonation of a nuclear device, the majority of resulting casualties will have sustained a combination of blast, thermal, and radiological injuries.
- The usual methods of treatment for blast injuries must be modified in those casualties simultaneously exposed to ionizing radiation.

 > Traditionally, combat wounds are left open. However, wounds left open to heal by secondary intention in the irradiated patient will serve as a nidus of infection. Wounds exposed to ionizing radiation should be debrided and closed at a second-look operation within 36–48 hours.

- Hypotension should always be assumed to be hypovolemia and not due to radiological injury.
• Hyperthermia is common.
• Radiological injuries increase the morbidity and mortality of injuries due to compromise of the normal hematopoietic and immune responses to injury. Surgical procedures may need to be delayed during bone marrow suppression, if at all possible.
• Potassium iodide may be used for prevention of thyroid uptake of radioisotopes after nuclear reactor accidents.
• Chelating agents may be used to eliminate metals from the bloodstream before they reach target organs.
• Mobilizing agents are used to increase the excretion of internal contaminants.
• Prussian blue is used to remove radionuclides from the capillary bed surrounding the intestine and prevents their reabsorption. Delay until patient is stable. Treat ABCs first.

Decontamination
• There are no reports of healthcare provider injury with radiation while performing ABCs on a radiation victim.
• Removal of the casualty’s clothing can eliminate as much as 90% of the radiological contamination.
• The first priority of surface decontamination should be to open wounds, then other areas.
 ◦ To prevent rapid incorporation of radioactive particles, wounds should be copiously irrigated with normal saline for several minutes.
 ◦ The eyes, ears, nose, mouth, and areas adjacent to uncontaminated wounds, hair, and remaining skin surface should be decontaminated with soap and water.
 ◦ Personnel providing decontamination must protect themselves from ionizing radiation exposure with:
 ♦ Protective outer clothing.
 ♦ Aprons, gloves, and masks.
• Amputation should be seriously considered when the contamination burden is great and severe radionecrosis is likely.

Logistics of Casualty Management
• If nuclear weapons are employed within theater, the entire medical evacuation and treatment system will be severely overburdened, and some system of classification and sorting of casualties must be added to the normal procedures of evacuation and hospitalization.
• Patients entering a medical treatment facility should be routinely decontaminated if monitoring for radiation is not available.
• These two requirements—the sorting of casualties and the holding of excess numbers—must be planned for and drilled as part of the normal organization and operation of the health service support system in a theater
of operations where radiation exposure potential is high.

For Clinical Practice Guidelines, go to
Chapter 29

Biological Warfare Agents

The reader is strongly advised to supplement material in this chapter with the following reference:

Introduction

Biological warfare (BW) agents infect the body via the same portals of entry as infectious organisms that occur naturally. These include inhalation into the respiratory tract; ingestion into the gastrointestinal tract; and absorption through mucous membranes, eyes, skin, or wounds. Most BW agents will enter the body through inhalation. Usually, the disease produced by a BW agent will mimic the naturally occurring disease, but the clinical presentation can be different if delivery of an agent occurs through a portal that differs from the natural portal.

Detection

- Compressed epidemiology with record numbers of sick and dying in a short time.
- High attack rates (60%-90%).
- High incidence of pulmonary involvement when usual form of infection is not (eg, anthrax).
- Incidence of a particular disease in an unlikely location.
- Increased deaths of animals of all species.
- Near simultaneous outbreaks of several different epidemics at the same site.
- Biological Identification Detection System or standoff BW detectors alarming.
- Direct evidence of an attack, such as contaminated or unexploded munitions.

Diagnosis

The first indication of an attack may be when large numbers of patients present with the same constellation of signs and symptoms, especially for a disease that is not endemic to the area of operations.

Rapid diagnostic tests may be available in forward areas to assist clinicians in early diagnosis:
• Isolation of the etiological agent can occur within 1–2 days for some agents.
• Enzyme-linked immunosorbent assays (ELISAs).
• Genome detection by polymerase chain reaction.
• Antibody detection.

Prevention and Protection
• Immunizations: Anthrax and, in specific scenarios, smallpox and plague.
 o Pre- or postexposure chemoprophylaxis—anthrax, plague, Q fever, and tularemia. Chemoprophylaxis for anthrax is presently approved by the Food and Drug Administration for postexposure only.
 ♦ Investigational new drugs exist for the treatment of Argentine hemorrhagic fever, botulinum toxin, Q fever, Rift Valley fever, Venezuelan equine encephalitis, and tularemia.

• Protective clothing and mask.

Decontamination—Personnel, Equipment, and Clothing
• Mechanical decontamination removes, but not necessarily neutralizes, the BW agent.
 o Brushing to ensure loosening of the BW agent from the surface.
 o Filtration and chlorination of drinking water to remove organisms.
• Chemical decontamination renders BW agents harmless through the use of disinfectants.
 o Soap and water followed with copious rinsing with water is often sufficient.
 o For patients requiring urgent decontamination, biological agents are neutralized within 5 minutes when contaminated areas are washed with a 0.5 % hypochlorite solution (1 part household bleach mixed with 9 parts water).
 o Do not use hypochlorite in the eyes, abdominal cavity, or on nerve tissue.
 o A 5% hypochlorite solution (ie, household bleach) may be used to decontaminate clothing or equipment.
• Physical decontamination, such as heat and solar ultraviolet radiation.
 o Dry heat for 2 hours at 160°C.
 o Autoclaving at 120°C under 1 atm of overpressure for 20 minutes.
 o Ultraviolet radiation difficult to standardize.
• Dry biological agents can be a hazard through secondary aerosolization, but adequate liquid decontamination will prevent this hazard. There is no vapor hazard, and special protective masks are generally not required for surgical personnel.

Infection Control

Infection control procedures should be reinforced for situations involving BW agents. Standard precautions are appropriate for BW agents once they have been identified. For an undifferentiated febrile illness following a BW agent attack:
• Place patients together in an isolated setting, such as a designated tent or other structure.
• Surgical masks may be placed on patients when isolation is not possible.
• Employ respiratory droplet precautions along with standard precautions until diseases transmissible by droplet (eg, plague and smallpox) have been excluded.

Medical Evacuation
• If plague, smallpox, and hemorrhagic fevers can be excluded, patients may be evacuated using standard precautions and the disease-specific precautions.

Plague and smallpox are internationally quarantinable diseases. Do not evacuate patient across international borders unless authorized by the theater surgeon.

• Isolation precautions should be added to standard precautions.
• Immediately upon diagnosing patients with smallpox, the line and medical chain of command must be notified.
• Observe strict quarantine.
 ◦ Standard and respiratory droplet isolation precautions.

 ♦ **Standard precautions.**

 ◦ Hand washing after patient contact.
 ◦ Use of gloves when touching blood, body fluids, secretions, excretions, and contaminated items.
 ◦ Use of mask, eye protection, and gown during procedures likely to generate sprays of blood, body fluids, secretions, or excretions.
 ◦ Handle contaminated patient-care equipment and linen in a manner that precludes transfer of microorganisms to individuals or equipment.
 ◦ Practice care when handling sharps and use pocket mask or other ventilation device when ventilating the patient.
 ◦ Place patient in private room when possible. Limit the movement or transfer of patient.

 ♦ **Droplet precautions.**

 ◦ Standard precautions plus:

 ■ Place patient in private room or with someone with the same infection. If not feasible, maintain at least 1 m distance between patients.
 ■ Use a mask when working within 1 m of patient.
Mask the patient if he/she needs to be moved.

- All contacts should be vaccinated within 7 days of exposure and quarantined together for at least 17 days following the most recent exposure.

Hemorrhagic Fevers—Hanta, Ebola, Lassa, Rift Valley, and Hemorrhagic Fever With Renal Syndrome

- Except for yellow fever, quarantine is not mandatory; however, person-to-person transmission is possible. Therefore, universal precautions are recommended.
- Medical evacuation may result in increased morbidity and mortality; thus, treatment at local medical treatment facilities is preferred.
- When necessary, patients may be evacuated using universal and respiratory droplet isolation precautions.

Biological Agents

The four toxins most likely to be used as biological agents are botulinum toxins, ricin, staphylococcal enterotoxin B, and T-2 mycotoxins (Table 29-1).

Table 29-1. Symptoms and Medical Management of Biological Toxins

<table>
<thead>
<tr>
<th>Biological Toxin</th>
<th>Signs/Symptoms</th>
<th>Medical Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botulinum</td>
<td>Cranial nerve palsies</td>
<td>Antitoxin/supportive care</td>
</tr>
<tr>
<td></td>
<td>Paralysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respiratory failure</td>
<td></td>
</tr>
<tr>
<td>Ricin</td>
<td>Fever, cough, shortness of breath</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthralgias, pulmonary edema</td>
<td>Nonspecific/supportive care</td>
</tr>
<tr>
<td>SEB</td>
<td>Nausea, vomiting, diarrhea</td>
<td>Nonspecific/supportive care</td>
</tr>
<tr>
<td></td>
<td>Fever, chills, headache</td>
<td></td>
</tr>
<tr>
<td>T-2 mycotoxin</td>
<td>Skin pain, redness, blistering</td>
<td>Nonspecific/supportive care</td>
</tr>
<tr>
<td></td>
<td>Nasal itching, epistaxis, rhinorrhea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dyspnea, wheezing, cough</td>
<td></td>
</tr>
</tbody>
</table>

SEB: staphylococcal enterotoxin B.

Bacterial Agents

The bacteria or rickettsia most often considered to be potential BW threat agents include *Bacillus anthracis* (anthrax), *Brucella* sp. (brucellosis), *Vibrio cholerae* (cholera), *Burkholderia mallei* (glanders), *Yersinia pestis* (plague), *Francisella tularensis* (tularemia), and *Coxiella burnetii* (Q fever) (Table 29-2).
Table 29-2. Symptoms and Medical Management of Bacterial Agents

<table>
<thead>
<tr>
<th>Bacterial Agent</th>
<th>Signs/Symptoms</th>
<th>Medical Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax</td>
<td>Fever, malaise, cough, shortness of breath, cyanosis</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Plague</td>
<td>High fever, chills, headache, cough, shortness of breath, cyanosis</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Fever, headache, myalgias, sweats, chills</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Cholera</td>
<td>Massive watery diarrhea</td>
<td>Fluid therapy and antibiotics (tetracycline, doxycycline, or ciprofloxacin)</td>
</tr>
<tr>
<td>Tularemia</td>
<td>Local ulcer, lymphadenop-, a thy fever, chills, headache, and malaise</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Q fever</td>
<td>Fever, cough, and pleuritic chest pain</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>

Viral Agents

A number of viruses are BW agents, including smallpox, viral hemorrhagic fevers, and the alpha virus that causes Venezuelan equine encephalitis (Table 29-3).

Table 29-3. Symptoms and Medical Management of Viral Agents

<table>
<thead>
<tr>
<th>Viral Agent</th>
<th>Signs/Symptoms</th>
<th>Medical Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEE</td>
<td>Fever and encephalitis</td>
<td>Nonspecific/supportive care</td>
</tr>
<tr>
<td>Smallpox</td>
<td>Malaise, fever, rigors, vomiting, headache followed by pustular vesicles</td>
<td>Antiviral under investigation/supportive care</td>
</tr>
<tr>
<td>VHF</td>
<td>Flushing of the face, petechiae, bleeding, fever, myalgias, vomiting, and diarrhea</td>
<td>Nonspecific/supportive care</td>
</tr>
</tbody>
</table>

VEE: Venezuelan equine encephalitis; VHF: viral hemorrhagic fever.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 30

Chemical Injuries

The reader is strongly advised to supplement material in this chapter with the following reference:

Introduction

The use of chemical agents in modern history includes the use of riot control agents, pulmonary agents (chlorine and phosgene), and vesicants (mustard) during World War I through the use of vesicants (mustard) and nerve agents by Iraq on Iran in the 1980s. The chemical agents most likely to be used today on the battlefield include nerve agents and mustard. However, with the implementation of various types of medical defenses, chemical casualties can be saved and returned to duty, and mortality can be minimized.

Personal Protection

- Prevention!
 - Avoid becoming a casualty.
 - Protect yourself and instruct your personnel to do the same.
- Prevent further injury of the casualty by instructing him/her to put on the protective mask and MOPP (Mission-Oriented Protective Posture) ensemble, and administer self-aid. If contaminated, tell the individual to remove clothing and decontaminate potentially exposed body surfaces.
- Provide buddy aid by masking the individual, administering antidotes, and spot decontaminating exposed body areas.
- Ensure completeness of the decontamination process to the greatest extent possible at the co-located patient decontamination station.
- Potential for vapor exposure from an off-gassing residual agent or inadvertent contact with undetected liquid is a hazard for medical personnel.
- Avoid contamination of the medical treatment facility.

Initial Treatment Priorities

- There is no single “best” way to prioritize emergency treatment for chemical or mixed casualties, although respiratory insufficiency and circulatory shock should be treated first. One workable sequence is shown below.
1. Treat respiratory insufficiency (airway management) and control massive hemorrhage.
2. Administer chemical agent antidotes.
3. Decontaminate the face (and protective mask if donned).
4. Remove contaminated clothing and decontaminate potentially contaminated skin.
5. Render emergency care for shock, wounds, and open fractures.
6. Administer supportive medical care as resources permit.
7. Transport the stabilized patient to a contamination-free (ie, clean) area.

Specific Chemical Warfare Agents and Treatment Considerations

Nerve Agents
- Tabun (GA), sarin (GB), soman (GD), cyclosarin or cyclohexyl sarin (GF), and methylphosphonothioic acid (VX).
- **General**: Nerve agents are among the most toxic of the known chemical agents. They pose a hazard in both vapor and liquid states, and can cause death in minutes by respiratory obstruction and cardiac failure.
- **Mechanism of action**: Nerve agents are organophosphates that bind with available acetylcholinesterase, permitting a paralyzing accumulation of acetylcholine at the myoneural junction.
- **Signs/symptoms**: Miosis, rhinorrhea, difficulty breathing, loss of consciousness, apnea, seizures, paralysis, and copious secretions.
- **Treatment**: Each deployed US service member has three **Antidote Treatment Nerve Agent Autoinjectors** (ATNAAs) for IM self-injection in a pocket of the protective mask carrier. Each kit delivers 2-mg injections of atropine sulfate and 600 mg pralidoxime chloride (2-PAMC). Each US service member also carries a 10-mg diazepam autoinjector to be administered by a buddy.
 - Immediate IM or IV injection with:
 - Atropine to block muscarinic cholinergic receptors (may require multiple doses in much greater amounts than recommended by Advanced Cardiac Life Support doses).
 - 2-PAMC (if given soon after exposure) to reactivate cholinesterase.
- **Pretreatment**: Military personnel may have also received pretreatment prior to nerve agent exposure. In the late 1990s, the US military fielded pyridostigmine bromide tablets as a pretreatment for nerve agent exposure (this reversibly binds to the enzyme acetylcholinesterase, enhancing the efficacy of atropine against soman).

Vesicants
- Sulfur mustard (HD or H), nitrogen mustard (HN), Lewisitec (L), and phosgene oxime (CX).
- **General**: The vesicants (blister agents) are cytotoxic alkylating compounds
exemplified by the mixture of compounds collectively known as “mustard.”

- **Mechanism of action:** Mustard is an alkylating agent that denatures DNA, producing a radiomimetic effect; and produces liquefaction necrosis of the epidermis, severe conjunctivitis, and, if inhaled, injures the laryngeal and tracheobronchial mucosa.

- **Signs/symptoms:** Skin blisters, moderate-to-severe airway injury (presentation can be delayed), conjunctivitis of varying severity that causes the casualty to believe he/she has been blinded, and mucus membrane burns. No delay with Lewisite; immediate burning of the skin and eyes.

- **Treatment:** Preventive and supportive. Immediate decontamination of the casualty has top priority. Agent droplets should be removed as expeditiously as possible by blotting with Reactive Skin Decontamination Lotion (RSDL) or flushing with water or 0.5% hypochlorite. RSDL is extremely effective at inactivating mustard.
 - Most military forces carry a decontamination powder or liquid that should be used immediately to remove the vesicant.
 - Because mustard tends to be an oily solution, water may spread the agent. Dimercaprol is used by some nations in the treatment of Lewisite. Dimercaprol must be used with caution because the drug itself may be toxic.

Lung-Damaging (Choking) Agents

- **Phosgene (CG), diphosgene (DP), chloropicrin (PS), and chlorine.**

- **General:** Lung-damaging or choking agents produce pronounced irritation of the upper and the lower respiratory tracts. CG smells like freshly mowed hay or grass.

- **Mechanism of action:** CG is absorbed almost exclusively by inhalation. Most of the agent is not systemically distributed, but rather is consumed by reactions occurring at the alveolar–capillary membrane.

- **Signs/symptoms:** CG exposure results in pulmonary edema following a clinically latent period that varies, depending on the intensity of exposure. Immediate eye, nose, and throat irritations may be the first symptoms evident after exposure (choking, coughing, tightness in the chest, and lacrimation). Over the next 2–24 hours, the patient may develop noncardiogenic fatal pulmonary edema.

- **Treatment:**
 - Terminate exposure, force rest, manage airway secretions, oxygen; consider steroids.
 - **Triage considerations** for patients seen within 12 hours after exposure:
 - Immediate care in ICU, if available for patients in pulmonary edema.
 - Delayed: dyspnea without objective signs of pulmonary edema; reassess hourly.
Minimal: asymptomatic patient with known exposure.

Expectant: patient presents with cyanosis, pulmonary edema, and hypotension. Patients presenting with these symptoms within 6 hours of exposure will not likely survive.

The Cyanogens
- Blood agents: hydrogen cyanide (AC) and cyanogen chloride (CK).
- General: AC and CK form highly stable complexes with metalloporphyrins, such as cytochrome oxidase. The term “blood agent” is an antiquated term used at a time when it was not understood that the effect occurs mostly outside of the bloodstream.
- Mechanism of action: Cyanide acts by combining with cytochrome oxidase, blocking the electron transport system. As a result, aerobic cellular metabolism comes to a halt.
- Signs/symptoms: Seizures, cardiac arrest, and respiratory arrest.
- Treatment:
 - Immediate removal of casualties from the contaminated atmosphere prevents further inhalation.
 - 100% oxygen.
 - If cyanide was ingested, perform gastrointestinal lavage and administer activated charcoal.
 - Specific antidotal therapy: Administer sodium nitrite (10 mL of 3% solution IV) over a 3-minute period, followed by sodium thiosulfate (50 mL of 25% solution IV) over a 10-minute period. Sodium nitrite produces methemoglobin that attracts the cyanide; sodium thiosulfate solution combines with the cyanide to form thiocyanate, which is excreted.

Incapacitation Agents
- BZ (3-quinuclidinyl benzilate) and indoles.
- General: Heterogeneous group of chemical agents related to atropine, scopolamine, and hyoscyamine that produces temporary disabling conditions with potent CNS effects that seriously impair normal function, but that do not endanger life or cause permanent tissue damage.
- Signs/symptoms: Mydriasis, dry mouth, dry skin, increased reflexes, hallucinations, and impaired memory.
- Treatment:
 - Immediate removal of firearms and other weapons to ensure safety.
 - Close observation.
 - Physostigmine, 2–3 mg IM every 15 minutes to 1 hour until desired level is attained; maintain with 2–4 mg IV every 1–2 hours for severe cases.

Thickened Agents
- Thickened agents are chemical agents that have been mixed with another
substance to increase their **persistence** (persistent agents may remain in the environment more than 24 hours).

- Casualties with thickened nerve agents in wounds are unlikely to survive to reach surgery.
- Thickened mustard has delayed systemic toxicity and can persist in wounds, even when large fragments of cloth have been removed.

Surgical Treatment of Chemical Casualties

- **Wound decontamination**—Initial management of a casualty contaminated by chemical agents will require removal of MOPP gear, as well as initial skin and wound decontamination with available decontaminant before treatment.
 - Bandages are removed, wounds are flushed, and bandages replaced.
 - Tourniquets are replaced with clean tourniquets after decontamination.
 - Splints are thoroughly decontaminated.

Vesicants and nerve agents are potential wound contamination hazards. Cyanogens are so volatile that it is extremely unlikely they would remain in a wound.

Off-Gassing

- The risk of vapor off-gassing from chemically contaminated fragments and cloth in wounds is very low and insignificant.

> **Off-gassing from a wound during surgical exploration will be negligible.**

Use of RSDL

RSDL inactivates nerve agents and mustard, and can remove an agent that has already begun to penetrate the skin. It is the preferred spot decontaminant for chemical casualties, but is not currently approved for use in eyes or wounds.

WARNING: Concomitant use with bleach may result in an exothermic reaction capable of generating sufficient heat to damage tissue.

Use of Hypochlorite Solution

- Household bleach is 5% sodium hypochlorite; hence, mix 1 part bleach with 9 parts water to create a ~0.5% solution.
- Dilute hypochlorite (0.5%) is an effective skin decontaminant, but the solution is **contraindicated** for use in or on a number of anatomical areas:
 - Eye: may cause corneal injuries.
 - Brain and spinal cord injuries.
 - Peritoneal cavity: May lead to adhesions.
 - Thoracic cavity: Hazard is still unknown, although it may be less of a problem.
- Full strength 5% hypochlorite is used to decontaminate instruments, clothing, sheets, and other inanimate objects.
Wound Exploration and Debridement

Surgeons and assistants should wear well-fitting, thin, butyl rubber gloves or double latex surgical gloves. **Gloves should be changed often** while ascertaining that there are no foreign bodies or thickened agents remaining in the wound.

Wound excision and debridement should be conducted using a no-touch technique. Removed fragments of tissue should be dumped into a container of 5% hypochlorite solution. Superficial wounds should be wiped thoroughly with 0.5% hypochlorite and then irrigated with copious amounts of normal saline.

Following the Surgical Procedure

- Surgical and other instruments that come into contact with possible contamination should be placed in 5% hypochlorite for 10 minutes prior to normal cleansing and sterilization.
- Reusable linen should be checked with the chemical agent monitor, M8 paper, or M9 tape for contamination. Soak contaminated linen in 5% hypochlorite.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 31

Pediatric Care

Introduction

The military surgeon needs to be familiar with the unique challenges that pediatric population patients present, not only in war, but also in noncombat military operations other than war scenarios. For US Army military medical units, the humanitarian augmentation medical equipment set, requested by the hospital commander through command channels, provides medical supplies and equipment for a population of 10,000 people.

Table 31-1. Hourly Fluid Requirements for Children

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Hourly Volume</th>
<th>Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10 kg</td>
<td>10 mL/kg</td>
<td>D5½ NS + 20 mEq KCl/L</td>
</tr>
<tr>
<td>11–20 kg</td>
<td>40 mL + 2 mL/kg over 10 kg</td>
<td>D5½ NS + 20 mEq KCl/L</td>
</tr>
<tr>
<td>>20 kg</td>
<td>60 mL + 1 mL/kg over 20 kg</td>
<td>D5½ NS + 20 mEq KCl/L</td>
</tr>
</tbody>
</table>

Anatomical and Physiological Considerations

- **Fluid, electrolyte, and nutrition.**
 - Normal fluid requirements in children are estimated via a weight-based nomogram (Table 31-1) or a length-based method (Table 31-1), such as the Broselow Pediatric Emergency Tape.
 - Fluid resuscitation is best performed with isotonic fluids at 20 cc/kg boluses. (See Evaluation and Diagnosis.)
 - Total fluid requirement should be adjusted for a goal urine output of 1–2 cc/kg/h.
 - Daily caloric and protein requirements are estimated by weight and age (Table 31-2).

Table 31-2. Daily Caloric and Protein Requirements for Children

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Body Weight (kcal/kg)</th>
<th>Protein (g/kg Body Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>90–120</td>
<td>2.0–3.5</td>
</tr>
<tr>
<td>1–7</td>
<td>75–90</td>
<td>2.0–2.5</td>
</tr>
</tbody>
</table>
- Breast milk is always the first choice when initiating oral intake in infants. Alternatively, infant formulas contain 20 kcal/oz. An estimate of the amount of formula needed to provide 120 kcal/kg/d is:

\[\text{Infant's weight (kg)} \times 22-30 = \text{Amount (in cc) of formula needed q4h}. \]

- **Pulmonary.**
 - In all children, it is important to recall that the most common cause of cardiac arrest is respiratory arrest. Hypoxemia can lead to bradycardia with hypoperfusion and then cardiac arrest in rapid succession.
 - Newborns tend to be obligate nasal breathers; thus, nasal airways should be avoided if possible.
 - The child’s larynx is positioned more anterior in the neck, making it more difficult to visualize during intubation and necessitating a more forward position of the head.
 - The acceptable range of PaO₂ (60–90 mm Hg) correlates to oxygen saturations of 92%–97%. A premature infant’s oxygenation saturation should never exceed 94% to avoid retinopathy of the premature.
 - Infants breathe mostly with their diaphragm; thus, increases in intraabdominal pressure or other problems that limit diaphragmatic movement can significantly inhibit respiration.

- **Cardiovascular.**
 - Vital signs by age group (Table 31-3).

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight (kg)</th>
<th>Respiration Rate</th>
<th>Pulse</th>
<th>BP (Systolic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premie</td>
<td><3</td>
<td>40–60</td>
<td>130–150</td>
<td>42 ± 10</td>
</tr>
<tr>
<td>Term</td>
<td>3</td>
<td>40</td>
<td>120–140</td>
<td>60 ± 10</td>
</tr>
<tr>
<td>1–5 years</td>
<td>~10–20</td>
<td>20–30</td>
<td>100–130</td>
<td>95 ± 30</td>
</tr>
<tr>
<td>6–10 years</td>
<td>20–32</td>
<td>12–25</td>
<td>75–100</td>
<td>100 ± 15</td>
</tr>
<tr>
<td>Adolescent</td>
<td>50</td>
<td>12–18</td>
<td>70</td>
<td>120 ± 20</td>
</tr>
</tbody>
</table>

- Cardiac stroke volume in children is relatively fixed. Therefore, bradycardia or relative bradycardia can significantly decrease cardiac output. Stimulation and oxygen therapy are corrective for more than 90% of significant bradycardias in infants.

Limit peripheral IV access attempts to 2 within 90 seconds for the child in shock, then immediately proceed to saphenous vein cutdown or intraosseous infusion. (See Chapter 7, Shock,
• **Burns.**
 - An infant or child’s head tends to encompass more of the body surface area, with the lower extremities being a smaller percentage. The area of the hand represented by the palm and fingers can be used to estimate 1% of total body surface area for burn calculations (Fig. 31-1).

 ![Fig. 31-1. Body surface area percentages for infants and children.](image)

 - **Gastrointestinal.**
 - Reflux is a common finding, especially in the newborn period. This predisposes some children to difficulty with digestion and frequent emesis.
 - Children are predisposed to hypoglycemia due to the low glycogen storage capacity of their liver. Full-term infants will tolerate NPO status for approximately 5 days (with an appropriate D10 solution). Premature infants will tolerate only 3 days of NPO status prior to the initiation of total parenteral nutrition.
 - A child’s GI tract is very sensitive to most insults, including electrolyte abnormalities and systemic illnesses. This can result in an ileus, manifest as feeding intolerance, and may precipitate necrotizing enterocolitis.
 - Gastroenteritis with diarrhea, often associated with fevers, is also a very common cause of severe dehydration.

 - **Hematology and blood volume.**
 - Infants have a physiological anemia during the first 3–5 months, with a hematocrit of 30%–33%.
 - Estimates of blood volume are as follows:

<table>
<thead>
<tr>
<th>Age Estimate</th>
<th>Volume (cc/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>90</td>
</tr>
<tr>
<td>Infant</td>
<td>80</td>
</tr>
</tbody>
</table>
• **Renal.**
 - Infants and young children have a limited ability to concentrate urine (maximum: 400–600 mOsm/L) and a fixed ability to excrete sodium, thus causing an inability to handle excess sodium and resulting in hypernatremia if they receive too much sodium.

• **Thermoregulation.**
 - Infants and young children are predisposed to heat loss, and they compensate poorly for wide fluctuations in ambient temperatures. Children have a higher ratio of body surface area to mass, and therefore are likely to become dehydrated earlier than adults when febrile.
 - Reduce exposure and keep infants and children in a regulated warm environment.

• **Immune system.**
 - Premature infants have incomplete development of their immune system, causing a 60-fold increased risk of sepsis. All elective surgery in infants under 30 days of age requires 48 hours of prophylactic antibiotics (with anaerobic coverage added when appropriate) after the first week of life.
 - Early signs of sepsis can include lethargy, intolerance to feedings, fever, hypothermia, tachycardia, and irritability before a rise in white blood cell count.

Evaluation and Diagnosis

• Pediatric cervical spine clearance can be performed with a physical exam in children who are awake and who have no neurological deficits. If there is no midline tenderness and no pain with active motion, the spine can be cleared. Obtunded children, those with focal neurological deficits, and those with tenderness should have further imaging, which will be dictated by what is available in your facility.

• CT imaging can be a valuable tool in pediatric trauma. Try to limit the dose of radiation with the CT protocol, if possible. In children under 10 kg, contrast should be injected by hand.

• Basic ATLS guidelines should direct the initial assessment and evaluation for all children involved in traumas. It is essential to keep the patient warm because children are much more prone to heat loss than adults.
 - Modified Glasgow Coma Scale scores for children < 4 years old:

<table>
<thead>
<tr>
<th>Verbal Response</th>
<th>Verbal Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate words/social</td>
<td>5</td>
</tr>
</tbody>
</table>
smile/fixes/follows
Cries, but consolable 4
Persistently irritable 3
Restless, agitated 2
None 1

Treatment
- The treatment algorithm shown here provides the proper sequence for the rapid sequence intubation of the pediatric patient (Fig. 31-2).

![Treatment Algorithm]

Fig. 31-2. Rapid sequence intubation for the pediatric patient.

Equipment and Supplies
- Accessory pediatric medical/surgical equipment arranged according to age and weight (Table 31-4).
- Surgical instruments.
 - If a pediatric surgical set is not immediately available, a peripheral
vascular set will usually contain instruments delicate enough to accomplish most tasks in newborns.

Table 31-4. Pediatric Resuscitation Equipment and Supplies

<table>
<thead>
<tr>
<th>Age, Weight (kg)</th>
<th>O2 Mask</th>
<th>Oral Airway</th>
<th>Bag Valve</th>
<th>Laryngoscope</th>
<th>ET Tube</th>
<th>Stylet</th>
<th>Suction</th>
<th>BP Cuff</th>
<th>IV Cath</th>
<th>NG Tube</th>
<th>Chest Tube</th>
<th>Urinary Cath</th>
<th>C-collar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premie 3 kg</td>
<td>Premie</td>
<td>Newborn</td>
<td>Infant</td>
<td>Infant</td>
<td>0 Straight</td>
<td>No cuff</td>
<td>6 Fr</td>
<td>6-8 Fr</td>
<td>Premie</td>
<td>21 gauge</td>
<td>12 Fr</td>
<td>10-14 Fr</td>
<td>Feeding</td>
</tr>
<tr>
<td>0-6 mo</td>
<td>Newborn</td>
<td>Infant</td>
<td>Infant</td>
<td>Small</td>
<td>1 Straight</td>
<td>No cuff</td>
<td>6 Fr</td>
<td>8 Fr</td>
<td>Newborn</td>
<td>22 gauge</td>
<td>12 Fr</td>
<td>12-16 Fr</td>
<td>Feeding</td>
</tr>
<tr>
<td>6-12 mo</td>
<td>Pediatric</td>
<td>Small</td>
<td>Pediatric</td>
<td>1 Straight</td>
<td>3-5-4 Fr</td>
<td>No cuff</td>
<td>6 Fr</td>
<td>8-10 Fr</td>
<td>Infant</td>
<td>22 gauge</td>
<td>12 Fr</td>
<td>14-20 Fr</td>
<td>8 Fr</td>
</tr>
<tr>
<td>1-3 yrs</td>
<td>Pediatric</td>
<td>Small</td>
<td>Pediatric</td>
<td>1 Straight</td>
<td>4-0-4 Fr</td>
<td>No cuff</td>
<td>6 Fr</td>
<td>10 Fr</td>
<td>Child</td>
<td>20-22 gauge</td>
<td>12 Fr</td>
<td>14-24 Fr</td>
<td>10 Fr</td>
</tr>
<tr>
<td>4-7 yrs</td>
<td>Pediatric</td>
<td>Medium</td>
<td>Pediatric</td>
<td>2 Straight</td>
<td>5-0-5.5 Fr</td>
<td>No cuff</td>
<td>14 Fr</td>
<td>14 Fr</td>
<td>Child</td>
<td>20 gauge</td>
<td>12 Fr</td>
<td>20-33 Fr</td>
<td>10-12 Fr</td>
</tr>
<tr>
<td>8-10 yrs</td>
<td>Medium</td>
<td>Pediatric</td>
<td>Adult</td>
<td>2-3 Straight</td>
<td>5-5-6 Fr</td>
<td>Cuffed</td>
<td>14 Fr</td>
<td>14 Fr</td>
<td>Child</td>
<td>15-20 gauge</td>
<td>12 Fr</td>
<td>20-30 Fr</td>
<td>12 Fr</td>
</tr>
<tr>
<td>24-50 kg</td>
<td>Adult</td>
<td>Large</td>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

BP: blood pressure; Cath: catheter; C-collar: cervical collar; ET: endotracheal; Fr: French (gauge); IV: intravenous; NG: nasogastric; O2: oxygen.

Commonly Used Drugs and Dosages

All doses are IV or IM.

- Phenobarbital: 10–20 mg/kg IV at a rate not to exceed 1 mg/kg/min (maximum dose: 40 mg/kg).
- Diazepam: 0.04–0.3 mg/kg/dose.
- Midazolam: 0.1 mg/kg IV (maximum: 5 mg).
- Atropine: 0.02 mg/kg IV.
- Phenytoin: 15–20 mg/kg IV; administered at 0.5–1.5 mL/kg/min as a loading dose, then 4–7 mg/kg/d IV for maintenance.
- Mannitol: 0.25–1.0 g/kg IV.
- Succinylcholine chloride: 2 mg/kg IV for <10 kg and 1 mg/kg IV for >10 kg.
- Ampicillin: 25–50 mg/kg IV q6h; 100–200 mg/kg/d divided q8h.
- Gentamicin: 4.5–7.5 mg/kg IV qd [once daily dosing (ODD)]; keep doses in manual for q8h dosing.
- Metronidazole: 7.5 mg/kg IV q6h.
- Acetaminophen: 15 mg/kg PO q4h.
- Cefazolin: 25–100 mg/kg/d divided q6h–q8h.
- Clindamycin: 15–40 mg/kg/d divided q6h–q8h.
- Hypertonic saline (3%): 5–10 mL/kg.
- Morphine: 0.1–0.2 mg/kg q2h–q4h PRN.
- Ketamine: 0.5–1.5 mg/kg IV over 1 minute >3 months; 2–4 mg/kg IM.

Surgical Management

- Basics.
 - As a general guideline, transverse incisions should be used in infants. This minimizes the risk of postoperative dehiscence, while still
allowing adequate exposure.

- Absorbable sutures, such as VICRYL or PDS (2-0), should be used to close the rectus fascia, regardless of the incision. The skin can then be closed using staples or absorbable monofilament suture (eg, MONOCRYL 4-0).

References

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 32

Care of Enemy Prisoners of War/Internees

Introduction

Healthcare personnel of the armed forces of the United States have a responsibility to protect and treat, in the context of a professional treatment relationship and universal principles of medical ethics, all detainees in the custody of the armed forces. This includes enemy prisoners of war (EPWs), retained personnel, civilian internees, and other detainees. For the purposes of this chapter, all such personnel are referred to as internees.

Department of Defense (DoD) healthcare personnel should make every effort to comply with “Principles of Medical Ethics Relevant to the Role of Health Personnel, Particularly Physicians, in the Protection of Prisoners and Detainees Against Torture and Other Cruel, Inhuman, or Degrading Treatment or Punishment”—adopted by the United Nations General Assembly Resolution 37/194, December 18, 1982 (see Appendix 1 in this book)—and all applicable DoD policies.

The Geneva Conventions

- Define medical personnel as those individuals “exclusively engaged in the search for, or the collection, transport, or treatment of the wounded or sick, or in the prevention of disease; and staff exclusively engaged in the administration of medical units and establishments” (Geneva Convention for the Amelioration of the Wounded and Sick in Armed Forces in the Field [GWS]).
- Medical personnel of enemy forces are not considered internees, but are classified as “retained” in order to treat other EPWs. Internees are also entitled to the protections afforded under the provisions of the Geneva Convention Relative to the Treatment of Prisoners of War (GPW). Detained persons who are not protected under GWS and GPW, may be protected under the provisions of the Geneva Convention Relative to the Protection of Civilian Persons in Time of War.

The Geneva Convention for the Amelioration of the Wounded and Sick in Armed Forces in the Field states that belligerents must care for the sick and wounded without any adverse distinction founded on sex, race, nationality, religion, political opinions, or any other similar criteria. Only medical urgency can justify priority in the order of treatment.
Workload

The number of internees and retained/detained personnel requiring medical in-processing and/or medical care can be staggering. Coalition forces captured over 62,000 internees during Operation Desert Storm. During the 1-week ground war, until the end of March 1991, 8,979 internees were treated.

- The most common internee medical condition reported during Operation Desert Storm was dental disease (24%). Other common medical illnesses were unexplained fever, nephrolithiasis, peptic ulcer disease, and malaria.

Wounds in internees may be different than those seen in friendly forces due to differences in personal protective gear, preexisting diseases, malnutrition, and neglect.

Medical Care of Internees

- Healthcare providers have a responsibility to report information that constitutes a clear and imminent threat to the lives and welfare of others.
- Whenever possible, internees should receive medical care equal to that given to our own troops.
 - Providers should report any suspected abuse or maltreatment of an internee.
 - Providers should inform the theater internment facility chain of command of internee physical limitations. Medical recommendations concerning internee activities are nonbinding. Decisions concerning internee activities are made by the chain of command.
- Healthcare providers charged with the care of internees should not be actively involved in interrogation, advise interrogators how to conduct interrogations, or interpret individual medical records/medical data for the purposes of interrogation or intelligence gathering.
- Healthcare personnel ordered to perform duties they deem unethical should request to be recused through his or her chain of command. If the situation is not resolved satisfactorily, healthcare providers may contact their Command Surgeon or the Inspector General.
- Requirements for internee care are provided in AR 190-8/OPNAVINST 3461.6/AFJI 31-304/MCO 3461.1. Internees must have an examination upon arrival at the detention facility, as well as a chest radiograph (tuberculin skin test for children up to age 14 years). Sick call must be available daily, and each internee must be weighed at least once per month. Sanitation and hygiene must be maintained at all times (AR 190-8).
- Medical records.
 - Internee medical records are the property of the US Government. Internees are entitled to a copy of their medical records upon release. Original records are retained.
 - The Health Insurance Portability and Accountability Act (HIPAA) does not apply to the medical records of internees (DoD Instruction
6025.18 and DoD 6025.18R). However, the handling, disposition, and release of all types of medical records are governed by regulation. Commanders and others who have an official need to know can access information contained in internee medical records by following the procedures given in AR 40-66, using DA Form 4254. Patient consent is not required. The medical treatment facility commander or designee, usually the patient administrator, determines what information is appropriate for release. Only specific medical information required to satisfy the terms of a request will be disclosed. Healthcare providers should expect that released medical information will be used by the chain of command, to include interrogators.

- Medical information.
 - Releasable medical information includes that which is necessary to supervise the general state of health and cleanliness of internees, to detect contagious diseases, and to provide for the safety and security of the facility.

Setup/Planning
- Develop plans for prisoners on a hunger strike or who refuse treatment.
- Enemy forces may have preexisting medical conditions requiring medication.
- Ensure that any internee/retained/detained person evacuated to the medical treatment facility for treatment is escorted by an armed guard, as designated by the nonmedical (echelon) commander. The guard must remain with the patient while in the medical evacuation and treatment chain. When possible, keep internees segregated from friendly forces patients.
- Internees requiring evacuation will receive an internee identification number upon entry into the detainee reporting system. Medical personnel **do not** search, guard, or interrogate internees.

It is critical that medical personnel not enter the general EPW holding area, but have patients brought out to them for sick call and any medical treatment.

- **NATO STANAG 2131**, *Multinational Phrase Book for Use by the NATO Medical Services—AMedP-5*, provides basic medical questions in a number of NATO languages.
- Use other retained persons/internees (especially medical personnel) as translators.
- Detainees may feign mental illness to avoid interrogation.

Screening
- Guards should ensure internees are screened for hidden weapons and other potentially dangerous materials. Medical personnel, however, must remain vigilant of these threats and mentally prepared should a threat or attack occur.
• During transfer, release, and/or repatriation, another medical examination should be performed. Final documentation of any ongoing medical, surgical, or wound care problem is completed and forwarded to the gaining facility or to the appropriate medical records repository.

Supply
• The internment facility must enforce field hygiene and sanitation principles.
• Plan for personal hygiene requirements and protective measures (insect netting, insect repellent, sunscreen).
• Coordinate with the supporting medical headquarters for additional preventive medicine support (pest management, potable water, dining facility sanitation, and waste disposal) and Veterinary Services support for food safety as required.

Medical Staffing
• The facility should be staffed to ensure that detainees receive the same standard of care as US forces.
• Retained medical personnel should be utilized for care of their compatriots in conformity with the Geneva Conventions.

Legal
• When possible, signed permission should be obtained for all surgical or invasive procedures.
• The patient’s identity should be absolutely clear in each photograph. Photographs are invaluable should there be a claim of unnecessary surgery or amputation.
• A high-quality camera is important.

Any patient who requires amputation or major debridement of tissue should be photographed (face as well as wound images).

Internee Advocate
• The military physician is often the commander’s advisor for medical ethics. The physician should be alert for potential and actual ethical conflicts, and make efforts to resolve them.
• They must also strive to maintain a “moral distance” from participating in any proceeding potentially adverse to the patient’s interest.

Personal safety should never be taken for granted by the medical team, regardless of familiarity with internees and surroundings.

Security
• There is always an element of danger to the medical staff in treating internees.
• Physical security will be provided by nonmedical personnel designated by the appropriate leadership.
• It is the capturing line unit’s responsibility to provide security for EPWs/detainees until arrival at an internment facility.
• Security personnel must accompany all internees whenever they are in a treatment or holding area. In forward areas, it may not be possible to have separate and secure medical treatment/holding areas for internees. When possible, internees should be segregated from allied, coalition, and US forces.
• When possible, avoid taking medical equipment into the patient wards for security reasons (ie, bring the patient to the equipment).
• Following treatment, the provider should alert internment medical personnel of any special needs the internee may have.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 33

Battlefield Transfusions

Introduction

About 75% of all trauma casualties requiring evacuation do not require any blood product transfusion, and, for the remaining 25%, most only require 1–4 units of blood. However, *exsanguinating hemorrhage is the leading cause of preventable deaths during war*. Between 5%–8% of evacuated casualties will lose large volumes of blood during initial care and require “massive transfusion” (10 or more units of red blood cells [RBCs] in 24 hours), which is associated with a high mortality. Such deaths occur early, generally within the first 6–12 hours following injury. In cases of massive blood loss, there is no substitute for the transfusion of blood. It is critical to recognize such casualties because transfusion support for massively transfused patients must be managed differently than for other casualties.

This chapter will briefly address early control of hemorrhage, blood products and their availability by role, ABO Rh matching of blood products, massive transfusion and its specific complications/management, emergency fresh whole blood collection, and transfusion reactions/management relevant to the field.

Early Control of Hemorrhage

- Patients who do not lose large amounts of blood following injury will not likely need blood products. Although this is an obvious statement, it highlights the point that every attempt to control external bleeding should be made during initial care.
- Tourniquets should be applied immediately to extremities with potential for life-threatening blood loss, such as with traumatic amputation, active/ongoing bleeding, or suspected vascular injury (ie, pulsatile bleeding or expanding hematoma formation).
- Advanced bandages or topical hemostatic agents approved for use in theater should be used to help control sites of external bleeding.
- Proximal extremity bleeding (eg, in the groin, axilla, and neck) is not amenable to tourniquet application; therefore, direct manual pressure should be applied as best as possible during evacuation.
- Control of severe bleeding at “noncompressible” sites in the thorax, abdomen, and pelvis can only be accomplished with surgery. Therefore, patients with suspected bleeding from injuries to the thorax, abdomen, and/or pelvis must be evacuated quickly to medical units with surgical
Early control of extremity and external hemorrhage with tourniquets, bandages, and direct manual pressure is essential.

Patients with suspected thoracic, abdominal, or pelvic bleeding must be evacuated quickly to medical units with surgical capability.

Blood Products Available by Role

- Blood product transfusion is an essential component for the management of exsanguinating hemorrhage, but is insufficient without definitive surgical control of bleeding.
- Damage control resuscitation initiated in the prehospital phase of care may include the use of blood products.
- Because no surgical assets are available at Role 1, blood products may not be available.
- Blood products fielded with forward surgical units are predominantly group O-stored RBCs and AB plasma (fresh frozen plasma [FFP] that is thawed and stored at 1°–6°C for up to 5 days as thawed plasma).
- Combat Support Hospitals have a much larger inventory of ABO type-specific blood products that also includes apheresis platelets (aPLTs) and cryoprecipitate.
- Availability, storage, and shelf-life of these products are outlined in Table 33-1.

Table 33-1. Blood Products by Role of Care

<table>
<thead>
<tr>
<th>Roles</th>
<th>Blood Product</th>
<th>ABO and Rh Groups</th>
<th>Storage Capacity</th>
<th>Storage</th>
<th>Shelf-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>RBCs</td>
<td>O Rh+/—</td>
<td>50–100 U</td>
<td>1°–6°C</td>
<td>42 days</td>
</tr>
<tr>
<td></td>
<td>Fresh frozen</td>
<td>AB, A</td>
<td>25–50 U</td>
<td>≤–18°C</td>
<td>1 yr/5 days postthaw</td>
</tr>
<tr>
<td></td>
<td>plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fresh whole blood*</td>
<td>Type-specific</td>
<td>Emergency collection only</td>
<td>20°–24°C</td>
<td>24 h</td>
</tr>
<tr>
<td></td>
<td>RBCs</td>
<td>O, A, B Rh+/—</td>
<td>300–500 U</td>
<td>1°–6°C</td>
<td>42 days</td>
</tr>
<tr>
<td></td>
<td>Fresh frozen</td>
<td>AB, A, B, O</td>
<td>100–200 U</td>
<td>≤–18°C</td>
<td>1 yr/5 days postthaw</td>
</tr>
<tr>
<td></td>
<td>plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apheresis platelets</td>
<td>O, A, B Rh+/—</td>
<td>Emergency collection only</td>
<td>20°–24°C</td>
<td>5 days</td>
</tr>
<tr>
<td></td>
<td>Cryoprecipitate</td>
<td>N/A</td>
<td>100–200 U</td>
<td>≤–18°C</td>
<td>1 yr/4 h postthaw</td>
</tr>
<tr>
<td></td>
<td>Fresh whole blood*</td>
<td>Type-specific</td>
<td>Emergency collection only</td>
<td>20°–24°C</td>
<td>24 h</td>
</tr>
</tbody>
</table>

N/A: not applicable; RBCs: red blood cells; U: units.

*Type-specific fresh whole blood collection is performed when plasma/RBC products are exhausted or when platelets are required.

**Type-specific fresh whole blood collection is performed when blood products are exhausted or in critical shortage (i.e., type O RBCs that are needed in reserve for emergency release).

ABO Matching of Blood Products

- Once the ABO typing of the casualty is known, type-specific blood products should be used if available.
- Until the ABO type of the casualty is known, **type O RBCs are safe for emergency transfusion**.
- Only AB plasma (which contains neither anti-A nor anti-B antibodies) is considered safe for emergency transfusion. However, AB plasma is a scarce resource because only 4% of the population has this blood type, so AB plasma is frequently unavailable. Reactions against the A antigen tend to be more severe; therefore, A plasma (which does not contain anti-A antibodies) is the next safest alternative for emergency transfusion (Table 33-2).
- At Role 2 surgical units, platelets are generally not available, and plasma products may be in short supply. In such cases, if such products are needed (as in massive transfusion), emergency collection of **type-specific** fresh whole blood is necessary.

Table 33-2. ABO Matching for Transfused Blood Products*

<table>
<thead>
<tr>
<th>Recipient Group</th>
<th>Unknown</th>
<th>O</th>
<th>A</th>
<th>B</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st choice</td>
<td>O</td>
<td>O</td>
<td>A</td>
<td>B</td>
<td>A, B, or AB</td>
</tr>
<tr>
<td>2nd choice</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st choice</td>
<td>AB</td>
<td>O</td>
<td>A</td>
<td>B</td>
<td>AB</td>
</tr>
<tr>
<td>2nd choice</td>
<td>A†</td>
<td>A</td>
<td>AB</td>
<td>AB</td>
<td>A†</td>
</tr>
<tr>
<td>3rd choice</td>
<td>B‡</td>
<td>B</td>
<td>B‡</td>
<td>A†</td>
<td>B‡</td>
</tr>
<tr>
<td>Whole blood‡</td>
<td>Type-specific</td>
<td>O</td>
<td>A</td>
<td>B</td>
<td>AB</td>
</tr>
</tbody>
</table>

RBCs: red blood cells.

*Platelets and cryoprecipitate do not need to be type-specific.

†Only suitable for emergency use when other plasma types are unavailable.

‡Fresh whole blood MUST be type-specific.

- Given the time that it takes to collect fresh whole blood from the time it is requested (30–45 minutes at best), it would be a very uncommon circumstance that the ABO type of the casualty would be unknown. If ABO typing is unavailable, **type O fresh whole blood is not safe** and can only be considered in extreme circumstances after at least 10 U of type O RBCs have been transfused (ie, after the native blood of the patient has been largely replaced with transfused type O RBCs).

- **Type O RBC is safe for emergency transfusion.**
- **AB plasma (or A plasma as the next safest alternative) is used for**
emergency transfusion.

- If fresh whole blood is required, it MUST be ABO type-specific.

Rh Blood Matching for Female Casualties

- Women, military and civilian, are becoming more frequent victims of conflict. **Serious consequences to Rh incompatible blood are rare in men who have no previous history of transfusions.**
- Rh– women transfused with Rh+ blood are very likely (approximately 80%) to produce anti-D (Rh+) antibodies. This seroconversion can jeopardize a subsequent pregnancy when this Rh– mother, now sensitized by Rh+ transfusion, conceives an Rh+ fetus. Chronic hemolytic disease of the newborn may result, which can be fatal to the fetus in 50% of pregnancies without modern treatments (which have reduced the mortality down to 16%).
- When the supply of group O blood permits, group O Rh– blood for emergency release should be reserved for women of child-bearing potential (age <50) until their ABO and Rh types are known. If Rh– blood is not available, Rh+ blood should **NOT** be withheld (saving a life takes precedence over risk of Rh immunization).
- Although there is a risk of Rh seroconversion with aPLTs (due to a small amount of RBCs in the unit), Rh incompatibility should not influence transfusion. **If Rh+ platelets are transfused to a Rh– woman, this can be mitigated by use of Rh immunoglobulin (RhoGAM) within 72 hours of platelet transfusion.**
- Rh seroconversion from FFP and cryoprecipitate is rare, and these products are not generally Rh matched.

Under no circumstances should a lifesaving transfusion be withheld because of Rh incompatibility. Saving a life takes precedence over Rh immunization.

Massive Transfusion

- Massive transfusion has been defined in various ways, but the most common definition is the need for ≥10 U of blood in 24 hours. (This is based on the estimate of 1 blood volume for an average adult male. Small individuals and pediatric patients have a lower blood volume that should be considered when deeming a patient as needing a massive transfusion.)
- **Survival in massively transfused combat casualties is higher in patients who are transfused with increased amounts of plasma and platelets.** Based on these observations, prior to definitive surgical control of bleeding, massively bleeding patients should be transfused in fixed ratios of blood products aiming at a ratio of 6 RBCs:6 FFPs:1 aPLT. It is reasonable to consider transfusing 10 U of cryoprecipitate along with this ratio.
- **Early recognition (on admission) of need for massive transfusion.**
 - Systolic blood pressure <110 mm Hg.
- Heart rate >105 beats per minute.
- Hematocrit <32%.
- pH <7.25.
- Patients with three of the above four risk factors have approximately a 70% risk of massive transfusion.
- Patients with all four of the above risk factors have an 85% risk of massive transfusion.

- Laboratory-directed transfusion thresholds should not be used in massively bleeding patients until the patient has been stabilized (because of the significant time lag between drawing labs and receiving their results).
- The rate and volume of blood products to transfuse should be determined clinically, until surgical correction of hemorrhage has been established. Goals include clinical factors supporting adequate perfusion, restoration of hemodynamic physiology, mentation, skin color, and urine output > 0.5 mL/kg/h.
- Massive transfusion protocols (Fig. 33-1) and good communications between providers in the ER, OR, ICU, and blood bank are essential.
- If platelets or plasma are unavailable, type-specific fresh whole blood (which provides all the blood components in a fixed ratio) should be collected and transfused to provide these critical components.

<table>
<thead>
<tr>
<th>• Survival in massively transfused combat casualties is higher in patients who are transfused with increased amounts of plasma and platelets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Crystalloid use should be minimized to avoid dilution.</td>
</tr>
<tr>
<td>• Goal blood pressure is systolic blood pressure ~90 mm Hg (in patients without central nervous system injury) until surgical control of bleeding is established.</td>
</tr>
<tr>
<td>• Blood products should be transfused with a goal ratio of 6 RBCs:6 FFPs:1 aPLT.</td>
</tr>
<tr>
<td>• If plasma or platelets are unavailable, type-specific fresh whole blood should be collected/transfused.</td>
</tr>
</tbody>
</table>

Management of Complications During Massive Transfusion

- **Hypothermia** in trauma patients develops from conductive, convective, evaporative, and radiative losses due to environmental and surgical exposure.
 - Because RBCs are stored at 4°C, hypothermia can develop quickly during massive transfusion.
 - Hypothermia contributes to coagulopathy (impaired clotting factors and platelets) and increased risk of cardiac dysrhythmias.
 - Fluid warmers are absolutely essential for preventing or limiting
hypothermia, along with other measures listed in Table 33-3.

- Currently, the goal during resuscitation is normalization of body temperature, 37°C.

Acidosis in massively transfused patients is largely due to hypoperfusion, but can be exacerbated by crystalloids and stored RBCs. (RBCs become progressively more acidic during storage due to cellular metabolism.)

- Acidemia contributes to coagulopathy and can cause dysrhythmia, hypotension, and decreased responsiveness to catecholamines.
- Reversal of acidosis is primarily accomplished through restoration of adequate tissue perfusion.
- Bicarbonate or tromethamine (THAM) can be used as necessary to achieve an arterial blood gas pH >7.2.

Hyperkalemia is a common complication due to extracellular potassium...
that increases over time in stored RBCs.
- During massive transfusion, blood can be administered rapidly through central lines without sufficient time or mixture to prevent this extracellular potassium from reaching the right heart and result in ventricular arrhythmia and cardiac standstill.
- Limit effects by transfusing blood from lines farther away from the right atrium.
- Hyperkalemia can also be limited with the use of fresher blood (<14 days).
- Vigilance for this complication is necessary (with labs and EKG monitoring).
- Management of hyperkalemia is listed in Table 33-3.
- **Hypocalcemia** occurs in massive transfusion due to the citrate (anticoagulant) in plasma and platelet products. Under normal physiological conditions, citrate is rapidly metabolized by the liver. Metabolism can also be overwhelmed by rapid infusion of plasma-containing components (>100 mL/min). It is also dramatically impaired in hypoperfused patients or those with advanced liver disease.
 - Hypocalcemic/citrate toxicity manifests by decreased myocardial contractility and increased susceptibility to arrhythmia from coexisting hyperkalemia.
 - Monitor for/anticipate hypocalcemia based on the pace of plasma transfusion, electrocardiographic changes, or ionized calcium levels.
 - Treat with intravenous calcium chloride.
 - If labs are not immediately available, 1 amp of calcium chloride should be administered with every 8 units of plasma.

Table 33-3. Management/Prevention of Complications of Massive Transfusion

<table>
<thead>
<tr>
<th>Hypothermia</th>
<th>Acidosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehospital active/resistive warming with hot packs/heating blankets</td>
<td>Restoration of adequate tissue perfusion</td>
</tr>
<tr>
<td>High-capacity fluid warmers</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>Warmed trauma suites/operating rooms</td>
<td></td>
</tr>
<tr>
<td>Forced-air warming blankets</td>
<td></td>
</tr>
<tr>
<td>Warmed/humidified oxygen</td>
<td></td>
</tr>
<tr>
<td>Limit surgical exposure (eg, damage control techniques)</td>
<td></td>
</tr>
</tbody>
</table>
Hyperkalemia

Transfuse fresher blood (<14 days)

Transfuse blood from lines farther away from the right atrium

Calcium chloride (1 amp) to stabilize the myocardium

Shift extracellular potassium into the intracellular space

Correction of acidemia/alkalinizing solutions

Regular insulin 10 units with 1 amp (50 mL) 50% dextrose

Inhaled beta-agonists

Hypocalcemia

Calcium chloride (1 amp) based on measurement of serum ionized calcium levels or with every 8 units of plasma

Coagulopathy/Microvascular Bleeding

Goal temperature > 37°C

Goal pH > 7.2

Goal ratio of transfused blood products of 6 RBCs:6 FFPs: 1 aPLT.

Type-specific fresh whole blood should be used if some or all of these blood products are unavailable

rFVIIa 7.2 mg IV if persistent microvascular bleeding, despite other measures

aPLT: apheresis platelet; FFPs: fresh frozen plasmas; RBCs: red blood cells; rFVIIa: recombinant factor VIIa.

- **Coagulopathy (trauma-induced and dilutional).**
 - Trauma-induced coagulopathy is frequently present on admission in severely injured patients, and it is correlated with the need for massive transfusion, as well as increased mortality.
 - Dilutional coagulopathy develops in massive transfusion as a consequence of the replacement of shed whole blood with factor and platelet-poor fluids like crystalloids, colloids, and stored RBCs.
 - Dilutional coagulopathy may be inevitable in patients requiring a massive resuscitation due to the addition of preservative solutions to stored blood products following collection. Transfusion of stored RBCs, plasma, and platelets—even in a 1:1:1 ratio—results in a solution with a hematocrit of 30%, coagulation factor levels of about 60%, and platelets of $80 \times 10^9/L$.
 - Limit crystalloids or colloids; they greatly intensify dilutional effects.
 - Primarily used only as a carrier for medications.
 - Additional administration of crystalloids to restore volume should be avoided in preference to blood products.
If blood products are not available, volume replacement with 6% Hetastarch (Hextend) 500–1,000 mL can be considered to achieve goal systolic blood pressure ~90 mm Hg.

- Recombinant factor VIIa (rFVIIa) can reduce blood loss in blunt trauma, although its benefit is less clear for penetrating trauma. The off-label use of rFVIIa (100 µg/kg or 7.2 mg) is still considered controversial, and should only be used with sound clinical judgment and after optimal management of hyperthermia, acidosis, and dilutional coagulopathy.
- If rFVIIa is used, adequate platelet counts and fibrinogen levels are necessary (managed with transfusion) prior to rFVIIa administration; otherwise, it will be much less effective.

- In stabilized patients, standard transfusion thresholds should be adopted for patients.
 - **RBC transfusion.**
 - Hemoglobin <7.0 g/dL.
 - Hemoglobin <9.0 g/dL with anticipated blood losses from planned surgery.
 - Hemoglobin <10.0 g/dL for patients with myocardial ischemia.
 - **Plasma transfusion.**
 - No bleeding or planned invasive procedures: No specific transfusion trigger.
 - Active bleeding or planned invasive procedure: Transfuse for prothrombin >18.0 or International Normalized Ratio >1.5.
 - **Platelet transfusion.**
 - Platelet count <50 with active bleeding or for invasive procedures: Higher for neurosurgical injuries as directed by the surgeon.
 - Platelet count <30 for patients requiring therapeutic anticoagulation (with heparin or Coumadin).
 - Platelet count <20 for febrile or “ill” patients.
 - Platelet count <10.

Emergency Collection of Fresh Whole Blood in the Field (“Walking Blood Bank”)

- Fresh whole blood collection should be reserved for when standard blood products are exhausted or unavailable (eg, when aPLTs are unavailable to support a massive transfusion at Role 2).
- Current Clinical Practice Guidelines and Department of Defense (Health Affairs) policy for the use of fresh whole blood in theater also include that fresh whole blood can be requested on clinical grounds when other blood
products are unable to be delivered at an acceptable rate to sustain the resuscitation of an actively bleeding patient, or when stored components are not adequately resuscitating a patient with an immediately life-threatening injury.

- Emergency collection and transfusion of fresh whole blood should not be performed at Role 1. For Roles 2 and 3, fresh whole blood collection should not be performed in lieu of securing blood products through normal channels.

- **Risks:** Even with soldiers who are immunized against hepatitis B virus (HBV) and screened for human immunodeficiency virus (HIV) predeployment, there is a real risk for transmission of hepatitis C virus (HCV), HIV, syphilis, human T-cell leukemia virus I/II, and endemic diseases (eg, malaria, dengue, and leishmaniasis). Additionally, cases of transfusion-associated graft-versus-host disease (a fatal, although rare complication) have occurred following fresh whole blood transfusion.

- Despite these potential risks, fresh whole blood is a **LIFESAVING** product that should not be withheld when standard blood components are **unavailable**.

- Fresh whole blood must be ABO type-specific to the patient.

Trying to collect blood at a time of extreme emergency, with little time, is very difficult and stressful. It cannot be mastered for the first time on actual casualties. Emergency fresh whole blood collection at best takes 30–45 minutes from request to its availability at bedside. It requires coordination between clinicians, nursing staff, and the blood bank. Variations will exist depending on blood product inventory, frequency of resupply, availability of donors, size and capability of medical unit, number of personnel (in clinical areas, as well as in the lab/blood bank), casualty flow, and mass casualty situations. Planning and hands-on training are critical. The medical unit should practice with realistic training exercises, including mass casualty situations, to walk through/simulate the entire process. The boxed information that follows below and on the next few pages is a template to organize an emergency fresh whole blood collection program that will need to be individualized to the specific tactical situation and environment:

1. **Clinical Determination of the Need for Fresh Whole Blood**
 - When will we use it?
 - Only to provide platelets during massive transfusion because aPLTs are unavailable? (at Role 2)
 - Only for mass casualty situations because of small inventory? (at Role 2 or 3)
 - Only to manage low inventory of type O blood because of the need to reserve for emergency release? (Role 2 or 3)
 - Will providers be able to request if they clinically determine that standard blood products are not adequate for resuscitation?
- How often do we anticipate the need to collect fresh whole blood?
- How early do I need to initiate a fresh whole blood drive?
 - How long will it take to get fresh whole blood? 45 minutes or several hours?
 - Do I have a process in place to facilitate ordering from the ER, as well as from the OR and ICU?

2. Request/Notification for Emergency Collection of Type-Specific Fresh Whole Blood

- Who is authorized to initiate a whole blood drive?
 - Surgeon?
 - Deputy Commander for Clinical Services (DCCS) and/or Hospital Commander?
 - Blood Bank Director?

- Who must be contacted to initiate the process (to mobilize resources)?
 - Nursing Supervisor and/or Deputy Commander of Nursing (DCN)?
 - Blood Bank Director/Lab Director?
 - Hospital S-3 to announce the blood drive outside the hospital?

3. ABO Typing of the Casualty

- Who will perform ABO Rh typing, and how long will it take to get a result?
 - Dog tags are only a last resort because they cannot be relied on. Dog tags have a 3% error rate in either ABO or Rh, and civilian casualties will not have known ABO Rh.

4. Identification of Potential Donors

- Who will be available to donate?
 - Medical Personnel—usually only to start the process/provide the first couple of donor units.
 - Soldiers awaiting return to duty—if holding area for healthy troops awaiting return to duty is available.
 - Local troops—if US soldiers are reasonably close by to be called on to provide donors.

- How will we notify/request donors?
 - Overhead announcement in the hospital?
 - Runner to go to the “return-to-duty” area to ask for volunteers?
 - Tactical communications to local military units?

5. Screening of Donors

- Will we only have blood type screening with dog tags (3% error rate in either ABO or Rh)?
- Can we establish in advance formal ABO Rh typing and a donor roster?
• Do we have donor screening questionnaires readily available?
• Where will we screen with donor questionnaires? (History of IV drug use, history of hepatitis, history of high-risk sexual behavior, recent febrile illness, use of aspirin or NSAIDs [nonsteroidal antiinflammatory drugs] within the last 72 hours.)
• Will we need to modify donor screening to account for endemic diseases (eg, malaria, dengue, or leishmaniasis)?
• Do we have or can we get “pedigree” donors with recent testing for transfusion transmitted viruses?
• If donor roster is created, who will keep this roster up-to-date with changes in personnel and when they last donated (can only donate once every 8 weeks)?

6. Collection of Fresh Whole Blood
• Do we have the current/standard SOP on Emergency Whole Blood Collection from the theater Blood Program Officer?
• Do we have the necessary equipment, such as the CDPA-1 blood collection bags (equipment listed in SOP)?
• Are there limits to the amount of blood collected because of high altitudes?
• Where will we physically collect blood? Beds? Cots? Chairs?
• How many donors can we collect at a time?
• Where will donors rest after donation?
• Repeat donors should receive iron supplementation. Who will order it for them?
• Are there limits to the number of soldiers from a single unit who can donate? (Performance may be impaired by donation. Large numbers can lead to increased unit ineffectiveness.)

7. Processing of the Collected Unit
• ABO confirmation.
• Unit labeling.
• Rapid screening for infections (pretransfusion): Currently for HIV 1/2, HBV, and HCV.
• Write the expiration of the unit, which is 24 hours from collection. Keep the product at room temperature (20°–24°C) because platelets become inactive in whole blood stored cold.
• Recording of data in the blood inventory and disposition records. (If units are not transfused, input donor information and disposition as “Destroyed/Expired.”)
• Management of units with positive rapid screening for HIV, HBV, or HCV.
 ◦ Destroy unit and place donor on deferral list.
 ◦ Inform Community Health Nurse of positive screening and confirmatory donor infectious disease results.
 ◦ Inform the Blood Program Officer of any donors with a
confirmed positive infectious disease marker where the patient received the donor’s blood.
- Notify donor to seek follow-up with healthcare provider on positive test results and not to donate blood or blood products.
- Process in place to send segments to CONUS for posttransfusion infectious disease testing.

8. **Release of Fresh Whole Blood to Bedside**
- Additional runners and nursing staff will be needed. Where will they come from?
- Who will run the fresh whole blood to the ER/OR/ICU?
- Will additional standard blood components, such as RBCs and FFP, also be issued if they are available? Will only fresh whole blood be used once a whole blood drive has been initiated?

9. **Monitoring of Ongoing Requirements for Fresh Whole Blood**
- Who will coordinate with the clinicians to communicate to the blood bank and collection area how many and how fast additional units are needed?

10. **Cessation of Fresh Whole Blood Collection**
- Who will determine that fresh whole blood is no longer needed (ie, the patient has stabilized or ongoing resuscitation is futile)?

Transfusion Reactions in the Field
- Transfusion reactions may be difficult to recognize in severely or multiply injured casualties. Regardless, clinicians should be aware of the potential complications of transfusion and their management in the deployed environment.

Treatment Plan for Transfusion Reaction
- STOP the transfusion.
- Assess the patient: review vitals and auscultate lungs. If patient is conscious, ask about subjective complaints.
- If fever and unexplained hypotension, consider **ABO mismatch** and **bacterial contamination/sepsis**.
- If unexplained hypoxia, consider **volume overload** and **TRALI** (transfusion-related acute lung injury).
- If unexplained hypotension/shock without fever, consider severe allergic reaction/ **anaphylaxis**.
- If bronchospasm or angioedema, consider **allergic reaction**.
- If only urticaria, likely **urticarial reaction**.

aPLTs: apheresis platelets; CONUS: continental United States; CPDA-1: citrate-phosphate-dextrose-adenine; HBV: hepatitis B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; SOP: standard operating procedure.
If only fever in stable patient, consider **febrile reaction**, but still send unit to blood bank to rule out ABO mismatch or bacterial contamination.

Acute Hemolytic Transfusion Reaction (ABO Incompatibility)
- Generally develops rapidly (minutes to a few hours) after initiation of an ABO incompatible RBC transfusion.
- Mortality can be >15% and increases with the amount of incompatible blood that is infused.
- The most common cause of hemolytic transfusion reactions is clerical error that occurs outside of the blood bank.
- Fever is the most common early sign; thus, a hemolytic transfusion should be considered any time a febrile reaction follows a transfusion.
- In unconscious/sedated patients, the only signs may be:
 - Fever.
 - Inappropriate hypotension.
 - Tachycardia.
 - Dark urine (reflecting hemoglobinuria).
 - Renal failure.
 - Development of generalized/coagulopathic bleeding due to associated diffuse intravascular coagulation (DIC).
- Frequently, such patients are given additional units of incompatible blood before medical personnel realize that a hemolytic transfusion reaction is occurring.
- Conscious patients can also report **chills, severe low back pain (reflecting renal involvement), dyspnea, apprehension, chest pain, nausea, and vomiting.**
- To prevent renal failure, administer 0.9% normal saline and intravenous furosemide as needed to maintain urinary output (goal: 100 mL/h or 1–2 mL/kg/h for small patients) until resolution of hemoglobinuria.
- The coagulation system and platelet count must be monitored for the development of DIC.
- FFP and platelet transfusions may be needed if coagulopathic bleeding develops.

Acute hemolytic transfusion reaction generally develops rapidly (from minutes to a few hours) after initiation of an ABO incompatible red blood cell transfusion.

Acute Hemolytic Transfusion Reaction Treatment
- Stop transfusion and clearly mark the suspected unit.
- Maintain blood pressure and urinary output with 0.9% saline ± intravenous furosemide as needed (goal urine output: 100 mL/h until resolution of hemoglobinuria).
• Observe for coagulopathic bleeding from diffuse intravascular coagulation and monitor coagulation tests/platelet counts. Treat as necessary with fresh frozen plasma and/or platelets.

• Recheck identification of patient and unit for clerical errors.

• Annotate field medical card or patient record with description of the suspected reaction and treatments.

• Send all transfused units at the bedside to the blood bank (or to the next echelon of care).

Bacteremia and Sepsis From Contaminated Blood Products

- Liquid stored blood products (aPLTs and RBCs) are a fertile culture media, and small amounts of contaminating bacteria may grow in blood products during their storage. These bacteria can cause fevers and bacteremia during or soon after a transfusion. If the bacterial load is sufficiently high or gram-negative organisms are present, frank sepsis (hypotension/shock) can develop.
- Platelets carry the highest risk for bacteremia/sepsis because they are stored at room temperature for up to 5 days.
- If fever and hypotension develop during or immediately following a transfusion of platelets, then broad-spectrum antibiotics should be administered.
- Because fever and hypotension are also signs of ABO mismatch, sepsis often cannot be immediately distinguished from an acute hemolytic transfusion reaction at bedside. The blood bank can clarify/rule out ABO incompatibility. Once ABO mismatch has been excluded by the blood bank, broad-spectrum antibiotics should be considered.

Febrile Nonhemolytic Transfusion Reaction

- Approximately 1% of all transfusions are accompanied by a temperature elevation (defined as an increase of 1°C above normal within 1 hour of transfusion), which can be with or without chills.
- Prevented by use of leuko-reduced blood products or with acetaminophen prior to transfusion (unlikely to mask fevers from hemolytic reactions or bacterial contamination).
- There is no definitive test with which to make the diagnosis of a benign febrile reaction, which may also be the first sign of a hemolytic reaction or the infusion of a unit contaminated with bacteria. For this reason, if a fever occurs, management involves:
 - Immediate cessation of the transfusion.
 - Evaluation/consideration for ABO mismatch or bacteremia.

Transfusion-Related Acute Lung Injury

- Transfusion-related acute lung injury (TRALI) is manifested by rapid onset
of “noncardiogenic” pulmonary edema with dyspnea, hypoxemia, and pulmonary infiltrates within 6 hours after transfusion.

- Whole blood, platelets, packed RBCs, and FFP are most commonly implicated.
- The estimated mortality rate for recognized TRALI is 5%–8%, although most patients recover completely with appropriate supportive care.
- Recognition.
 - TRALI in trauma patients can be challenging to distinguish from concomitant pulmonary contusions, blood aspiration, fat embolization, and/or inhalational injury (particular mechanism of injury is an important consideration).
 - Chest radiography is similar to acute respiratory distress syndrome, with bilateral patchy alveolar infiltrates, typically with a normal cardiac silhouette and without effusions.
 - Patients who require intubation have elevated peak airway pressures and frothy pink airway secretions.
 - A key feature of TRALI is that noncardiogenic pulmonary edema must be differentiated from volume overload or heart failure.
 - At Role 2, evaluation is guided by clinical evaluation, exam, and transduced central venous pressure.
 - At Role 3, bedside ECHO may further assist in evaluation of volume status.
 - If volume status of the patient cannot be determined, administration of furosemide can be considered. If the clinical status of the patient does not improve with diuresis, then TRALI is more likely.
- Management of TRALI:
 - Supportive.
 - Milder cases may only require supplemental oxygen as required to maintain oxygen saturation.
 - Intubation with mechanical ventilation is often required.
 - Ventilation is preferably with “lung protective” modes (eg, low tidal volumes and plateau pressures).
 - Unlike adult respiratory distress syndrome, resolution occurs rapidly. Most patients can be extubated within 48 hours, and chest radiographs generally return to normal within 4–7 days.

Urticarial Transfusion Reactions
- Urticaria (hives/itching) is the only transfusion reaction in which the blood product can be continued.
- Thought to occur from an allergenic substance in the plasma of donated blood products.
- Does NOT have wheezing/bronchospasm or inappropriate hypotension
(which are allergic reactions).

- **Management of urticarial reactions:**
 - Hold transfusion.
 - Treat with diphenhydramine 25–50 mg IV or PO.
 - If urticaria wanes and neither dyspnea nor hypotension are apparent, the transfusion may be resumed.

Allergic Transfusion Reactions

- Mild allergic reactions involve dyspnea, bronchospasm/wheezing, and/or abdominal pain (intestinal edema).
- More severe allergic reactions can include rapid onset of stridor, angioedema, and respiratory failure.
- True anaphylactic reactions (marked by hypotension and shock) are rare.
- **Does not cause fevers.**
- **Management of allergic reactions:**
 - Immediate cessation of the transfusion.
 - If only bronchospasm (without stridor, angioedema, or hypotension) is evident:
 - Bronchodilators (albuterol).
 - Diphenhydramine 25–50 mg IV.
 - Consider giving ranitidine 50 mg IV.
 - Oxygen 6–8 L/min via face mask to maintain oxygen saturations >93%.
 - If stridor or angioedema is evident, include the measures above and also:
 - Intubation.
 - Epinephrine, 0.3 mL of a 1:1,000 solution intramuscularly (adult dose), repeated every 3–5 minutes as needed.
 - If inappropriate hypotension or shock are evident:
 - Fluid resuscitation and vasopressors (eg, dopamine) as needed to maintain blood pressure.
 - Consider giving methylprednisolone 125 mg IV.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 34

Compartment Syndrome

Introduction

(See Chapter 25, Vascular Injuries.)

- Compartment syndrome may occur with an injury to any fascial compartment. The fascial defect caused by the injury may not be adequate to fully decompress the compartment, and compartment syndrome may still occur.
- Mechanisms of injuries associated with compartment syndrome.
 - Open fractures.
 - Closed fractures.
 - Penetrating wounds.
 - Crush injuries.
 - Vascular injuries.
 - Reperfusion following vascular repairs.
- Early clinical diagnosis of compartment syndrome.
 - Pain out of proportion.
 - Pain with passive stretch.
 - Tense, swollen compartment.
- Late clinical diagnosis.
 - Paresthesia.
 - Pulselessness and pallor.
 - Paralysis.
- Measurement of compartment pressures: Not recommended, just do the fasciotomy.
 - Diagnosis of compartment syndrome is made on clinical grounds.
 - Measurement of compartment pressures is not recommended in the combat zone.
- Consider prophylactic fasciotomy for:
 - Vascular repair/shunt and/or ligation independent of ischemia time.
 - High index of suspicion injuries and limited capacity for serial examination.
 - Intubated, comatose, sedated.
 - Traumatic brain injury.
 - Prolonged transport.
Fasciotomy Technique

- **Upper extremity.**
 - **Arm:** The arm has two compartments: the *anterior flexors* (biceps, brachialis) and the *posterior extensors* (triceps).
 - Lateral skin incision from the deltoid insertion to the lateral epicondyle.
 - Spare the larger cutaneous nerves.
 - At the fascial level, the intermuscular septum between the anterior and posterior compartments is identified, and the fascia overlying each compartment is released with longitudinal incisions.
 - Protect the radial nerve as it passes through the intermuscular septum from the posterior compartment to the anterior compartment just below the fascia.
 - Compartment syndrome in the hand is discussed in Chapter 24, Injuries to the Hands and Feet.
 - **Forearm:** The forearm has three compartments: the *mobile wad* proximally, the *volar* compartment, and the *dorsal* compartment (Fig. 34-1).
 - A palmar incision is made between the thenar and hypothenar musculature in the palm, releasing the carpal tunnel as needed.
 - This incision is extended obliquely across the wrist flexion crease to the ulnar side of the wrist and then arched across the volar forearm proximally to the ulnar side at the elbow.
 - At the elbow, just radial to the medial epicondyle, the incision is curved obliquely across the elbow flexion crease. The deep fascia is then released.
 - At the antecubital fossa, the fibrous band of the lacertus fibrosus overlying the brachial artery and median nerve is carefully released.
This incision allows for soft-tissue coverage of the neurovascular structures at the wrist and elbows, and prevents soft-tissue contractures from developing at the flexion creases.

A second straight dorsal incision can be made from the dorsal wrist to the lateral epicondyle to release the dorsal compartment, reaching proximally to release the mobile wad, if necessary.

Lower extremity.

Thigh: The thigh has three compartments: the anterior compartment (quadriceps), the medial compartment (adductors), and the posterior compartment (hamstrings).

A lateral incision is made from the greater trochanter to the lateral condyle of the femur.

Then, the iliotibial band is incised, and the vastus lateralis is reflected off the intermuscular septum bluntly, releasing the anterior compartment.

The intermuscular septum is then incised the length of the incision, releasing the posterior compartment.

This release of the intermuscular septum should not be made close to the femur, because there are a series of perforating branches of the profunda femoris artery passing through the septum from posterior to anterior near the bone.
- The medial adductor compartment is released through a separate anteromedial incision starting slightly distal to the adductor origin on the pubis and extending to the distal medial thigh.

- **Calf:** The calf has four compartments: the lateral compartment, containing the peroneal brevis and longus; the anterior compartment, containing the extensor hallucis longus, the extensor digitorum communis, the tibialis anterior, and the peroneus tertius; the superficial posterior compartment, containing the gastrocnemius and soleus; and the deep posterior compartment, containing the flexor hallucis longus, the flexor digitorum longus, and the tibialis posterior (Fig. 34-2).

![Fig. 34-2. Calf compartments.](image)

Cmpt.: compartment; EDL: extensor digitorum longus; EHL: extensor hallucis longus; FHL: flexor hallucis longus; G.: greater; M.: muscle; V.: vein.
Two-incision technique. (CAVEAT: The one-incision technique IS NOT APPROPRIATE for compartment syndrome decompression in combat theater.)

◊ Incisions must extend the entire length of the calf to release all of the compressing fascia and skin (Fig. 34-3).

◊ A lateral incision is made centered between the fibula and anterior tibial crest.

◊ The lateral intermuscular septum and superficial peroneal nerve are identified, and the anterior compartment is released in line with the tibialis anterior muscle, proximally toward the tibial tubercle and distally toward the anterior ankle.

◊ The lateral compartment is then released through this incision in line with the fibular shaft, proximally toward the fibular head, and distally toward the lateral malleolus.

◊ A second incision is made medially at least 2 cm medial to the posteromedial and palpable edge of the tibia.

◊ A medial incision over or near the subcutaneous surface of the tibia is avoided, preventing exposure of the tibia when the tissues retract.

◊ The saphenous vein and nerve are retracted anteriorly.
The superficial compartment is released through its length, and then the deep posterior compartment over the flexor digitorum longus is released. Then identify the tibialis posterior and release its fascia.

Foot.

- See Chapter 24, Injuries to the Hands and Feet.
- Compartment release of the foot is rarely indicated and not routinely recommended in combat surgery.

- Fasciotomy wound management.
 - As with all war wounds, the fasciotomy is initially left open and covered with sterile dressings.
 - Following fasciotomy, the wound should be treated with delayed primary surgical closure and standard wound management, removing debridement of all devitalized tissue.
- The vacuum wound closure system is an important adjunct to modern combat wound care and may be considered at higher echelons of care.
 - Only one device is currently approved for this application: the wound Vacuum-Assisted Closure (VAC) Therapy System.
 - Field-expedient, vacuum-assisted wound closure is an alternative. Field-expedient vacuum dressings are easily created with standard issue items, including the following:
 - Laparotomy sponges.
 - Jackson-Pratt (JP) drains.
 - Ioban.
 - Benzoin.
 - Adaptec (nonadherent gauze, for skin grafts).
 - Sterile perforated IV bags.

- For wounds of the **soft tissue and extremities**, layer laparotomy sponges with JP drains sandwiched between the sponges and covered with Ioban. Apply Benzoin to the skin edges to prevent leaks.

- Attach the JP drains to the standard vacuum pump adjusted to 125 mm Hg suction. This dressing eliminates the need for skin traction in amputations.

- For **skin grafts**, staple the graft to the edges of the wound. Apply nonadhering gauze and apply to field-expedient vacuum dressing. Do not remove for 3 days. Grafts can be dressed with Silvadene when the field-expedient vacuum dressing is removed.
For open abdominal wounds, place sterile perforated IV bags on the bowel and sew the IV bag to the fascia, or underlay the fascia with the IV bag. Place laparotomy sponges on the IV bags and layer with JP drains. Apply Benzoin to the skin edge and cover with Ioban. Attach the drains to suction. This dressing prevents leaking of abdominal fluids during transport.

Many surgeons consider this an important part of wound management because the use of vacuum systems may improve and accelerate wound healing in a variety of conditions, including:

- pressure ulcers,
- partial thickness burns,
- orthopaedic wounds with large soft-tissue defects,
- open abdominal wounds, and
- skin graft viability.

Treatment of soft-tissue injury is the most common denominator in the management of war wounds.

Pitfalls

- Delay in diagnosis and treatment of suspected or impending compartment syndrome.
- Inadequate fascial incision length.
- Failure to open deep posterior and anterior compartments.
- Failure to locate lateral leg intermuscular septum and perform both lateral and anterior release.

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 35

Battlefield Trauma Systems

Introduction

A trauma system is an organized, coordinated effort in a defined geographic area that delivers the full range of care to all injured patients and is integrated with the local public health system. The true value of a trauma system is the ability to provide the appropriate level of care to injured patients, integrating existing resources to achieve improved patient outcomes.

Military Trauma Systems

In the battlefield setting, the region is frequently represented as the Combatant Command (COCOM), which has principal responsibility for military operations, including medical support. Regions may be further subdivided into Theater of Operations (TO) and areas of responsibility, or by specific operations (eg, Operation Enduring Freedom [OEF] and Operation Iraqi Freedom [OIF]). For US forces injured outside the continental United States (CONUS), the continuum of care includes all levels of care within the TO (Roles 1–3), care delivered outside the TO (Role 4), care delivered within CONUS (Roles 4 and 4a), and all phases of patient movement (en route care) from point of injury to definitive care. The goal of a battlefield trauma system is to ensure that every casualty gets the right care, at the right time, in the right place, and that overall survival and chance for maximal function recovery are maintained throughout the continuum of care.

Battlefield Trauma System Model

The current model of the deployed military trauma system is the Joint Theater Trauma System (JTTS). Currently being codified in Services and Joint doctrine, the development, implementation, and maturation of the JTTS are major factors in the low died of wounds (DOW) rate and in the improved functional recovery seen in battlefield casualties in OEF/OIF.

The COCOM JTTS team is assigned to and works directly within the TO and reports directly to the COCOM Surgeon General (SG). A dedicated triservice JTTS team undergoes specialized training in CONUS just prior to deployment to the TO. The team consists of: 1 Theater Medical Director or Trauma Medical Director (TMD) who is either a trauma-trained/critical care surgeon or a combat experienced general surgeon, 1 critical care nurse who is the Program Manager (PM), sufficient numbers of critical care nurses who function as Trauma Nurse Coordinators (TNCs) attached to Role 3 medical treatment facilities (MTFs) within
theater, sufficient numbers of enlisted personnel to support the team and its
taskings, and additional nurses and enlisted personnel to support special projects
as directed by the Department of Defense (DoD) or the COCOM SG.

The TMD is the senior consultant to the COCOM SG on all matters related to the
care of the trauma patient. The TMD works closely with all trauma care providers
within the TO and within the bounds of the operational environment. Also, the
TMD makes frequent site visits to fixed MTFs and evacuation platforms. The
TMD is the primary advocate for the theater-wide performance improvement (PI)
program. The principal duties of the TMD are to advise the COCOM SG on all
matters related to trauma; conduct system-wide patient care conferences on a
regular basis; update, revise, educate, and oversee compliance with theater
Clinical Practice Guidelines (CPGs); and produce a monthly theater update report
based on data from the DoD Trauma Registry (DoDTR).

The primary responsibilities of the PM are to support the TMD in all efforts and
taskings, manage the entire team of nurses and enlisted personnel, ensure a
robust theater-wide PI program with the TNCs, communicate with theater and
the CONUS Joint Trauma System (JTS) team on a regular basis, and ensure
quality data abstraction into the DoDTR by the TNCs.

TNCs are critical to the success of the JTTS. Their primary duty is to facilitate a
robust PI program within their respective MTFs working directly with the Chief
of Trauma. Additionally, they perform near real-time extraction of data from the
casualty’s medical record into the DoDTR to support ongoing PI initiatives.
Enlisted personnel provide critical administrative and technical support to the
team, as well as functional expertise in their primary duty designation.

Purpose of the JTTS

The JTTS is a systematic and integrated approach to coordinate battlefield care to
minimize morbidity and mortality, and optimize essential casualty care. The
primary focus of JTTS is to improve battlefield trauma care to ensure that the
right patient gets to the right place at the right time to receive the right care.

The JTTS was modeled after the civilian trauma system principles outlined in the
American College of Surgeons–Committee on Trauma Resources for Optimal Care of
the Injured Patient, 2006. This document identifies trauma care resources and
practices for optimization of standards of care, policies, procedures, and protocols
for both prehospital and hospital personnel. Additionally, it identifies and
integrates processes and procedures to record trauma patient-related data at all
levels of care for continual process improvement.

There is joint service participation in the JTTS and DoDTR. A JTTS trauma TMD
and theater TNCs are rotated from each service and integrated into the TO to
facilitate improvements in care. The DoDTR, the repository for all significant
trauma-related data, is utilized to facilitate PI, utilization of resources, and
provide command-level information to the battlefield commanders and DoD
decision makers.

JTTS Goals
- Establish and maintain a trauma registry to capture data and provide information on the care and outcomes of military and civilian trauma patients.
 - Provide the services with full and complete access to data in the trauma registry.
 - Provide a database that can generate reports for authorized government agencies.
 - Provide a database that can be queried for Institutional Review Board-approved research studies.
 - Provide electronic collection and dissemination of trauma patient data available for all levels of care supporting a longitudinal health record.
 - Establish and maintain a trauma outcomes database to analyze and evaluate clinical decision-making and measure subsequent outcomes for improving treatment modalities.
- Provide the DoD and other authorized interests with timely and relevant information about care and outcomes.
- Create a research strategy that supports reduction of morbidity and mortality.
- Standardize trauma practices across the continuum of care with the development and implementation of evidence-based CPGs.
- Improve medical record documentation quality.
- Improve communication across the continuum of casualty care.

Joint Trauma System

The JTS is the CONUS-based enduring organization in the DoD that promotes improved trauma care to our wounded warriors and other DoD-eligible trauma victims. It also exists as the chief organization for consultation in the care of the injured for the services, COCOMs, and the entire DoD, to include its senior leadership. It is designed to meet the needs of the President, the Secretary of Defense, and COCOMs with regard to all aspects of trauma care within the DoD. To fulfill this mission, there is a core cadre of trained individuals led by a senior surgeon with prior deployment experience as the JTTS TMD and adequate resources and funding to sustain all the components of the trauma system. The ultimate size of the organization is dictated by events and contingencies—ie, a larger, more robust organization during times of extreme conflict and a smaller but still fully capable organization during times of relative low operations tempo and kinetic operations. JTS works proactively with COCOMs to facilitate the early implementation of JTTS in support of future kinetic operations or other contingencies. The JTS is the primary steward and maintainer of the DoDTR. Components of the JTS (Fig. 35-1) include:

- Prevention.
- Integrated prehospital, en route, and Roles 1–4 care.

JTS COMPONENTS

<table>
<thead>
<tr>
<th>Performance Improvement</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient safety</td>
<td>Linkage with materiel developers</td>
</tr>
<tr>
<td>Feedback mechanism for providers throughout continuum of care</td>
<td>Service centers for health promotion and preventive medicine</td>
</tr>
<tr>
<td>Loop closure</td>
<td>Education & Advocacy</td>
</tr>
<tr>
<td></td>
<td>Linkage with service medical education and training centers</td>
</tr>
<tr>
<td></td>
<td>Predeployment training</td>
</tr>
<tr>
<td></td>
<td>Trauma Outcomes and Performance Improvement Course—Military (TOPIC-M)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrated Prehospital</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated approach for MTFs and divisional medical units</td>
<td>Provide raw data in accordance with established MOAs and protocols</td>
</tr>
<tr>
<td>Coordinated divisional evacuation standard operating procedures</td>
<td>Provide statistical information through approved protocols</td>
</tr>
<tr>
<td>Adopt Clinical Practice Guidelines</td>
<td></td>
</tr>
<tr>
<td>Communicate</td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leadership & Communication</th>
<th>Information Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma director/coordinators/registrars</td>
<td>DoD Trauma Registry (DoDTR)</td>
</tr>
<tr>
<td>Intra-theater</td>
<td>- Data for PI and analysis</td>
</tr>
<tr>
<td>Inter-theater</td>
<td>- Data from Theater Medical Data Store (TMDS)</td>
</tr>
<tr>
<td>Recognized lead agent and consulting agents</td>
<td>- Modules to support related functional disciplines</td>
</tr>
<tr>
<td></td>
<td>- DoDTR—Longitudinal Trauma Registry</td>
</tr>
<tr>
<td></td>
<td>- Provide data/information needs for MTFs/services/DoD</td>
</tr>
</tbody>
</table>

Fig. 35-1. JTS components across the continuum of care.

- Education and advocacy.
- Leadership and communication.
- Continuous PI.
- Research.
- Information systems (eg, DoDTR Level II Database, Massive Transfusions Database, etc).

Summary

Implementation of the JTS and the JTTS has been a major advance in casualty care during OEF/OIF. Lessons learned have been codified in multiple ways to include doctrinal and policy changes, manning, CPGs, and patient treatment and
management techniques. Every individual involved in casualty care is a member of the system, including providers, MEDEVAC personnel, medical logisticians, etc. A systems approach to casualty care contributed to decreased morbidity and mortality in OEF/OIF.

Reference

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Chapter 36

Emergency Whole Blood Collection

Introduction

This chapter describes the steps for emergency whole blood collection.

<table>
<thead>
<tr>
<th>MATERIALS AND EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>• Sharps containers</td>
</tr>
<tr>
<td>• Biohazard bags</td>
</tr>
<tr>
<td>• Trash bags</td>
</tr>
<tr>
<td>• Leak-resistant chucks</td>
</tr>
<tr>
<td>• Ammonia inhalants</td>
</tr>
<tr>
<td>• Cold packs</td>
</tr>
<tr>
<td>• Test tube racks</td>
</tr>
<tr>
<td>Donor Screening</td>
</tr>
<tr>
<td>• Emergency Donor List</td>
</tr>
<tr>
<td>• Modified DD Form 572</td>
</tr>
<tr>
<td>• Clipboards</td>
</tr>
<tr>
<td>Vitals</td>
</tr>
<tr>
<td>• Sphygmomanometer</td>
</tr>
<tr>
<td>• Stethoscope</td>
</tr>
<tr>
<td>• Lancets</td>
</tr>
<tr>
<td>• Alcohol pads</td>
</tr>
<tr>
<td>• 2 × 2 gauze</td>
</tr>
<tr>
<td>Bag Issue</td>
</tr>
<tr>
<td>• Emergency Whole Blood Collection Log</td>
</tr>
<tr>
<td>• ISBT (International Society of Blood Transfusion) labels (if available)</td>
</tr>
<tr>
<td>• ABO/Rh stickers (if available)</td>
</tr>
<tr>
<td>Phlebotomy and Supplies</td>
</tr>
<tr>
<td>• Donor chest</td>
</tr>
<tr>
<td>• Donor chair</td>
</tr>
<tr>
<td>• Blood bag scales (HemoFlow)</td>
</tr>
<tr>
<td>• Blood bag stand</td>
</tr>
<tr>
<td>• Terumo single blood bags</td>
</tr>
<tr>
<td>• Frepp/Sepp kit</td>
</tr>
</tbody>
</table>
• Gloves
• Surgical tape
• 4 × 4 gauze
• Hand stripper, sealer, cutter
• Hand sealer clips
• Scissors
• Hemostats
• VENOJECT Luer Adapter
• Luer Adapter hub
• Collection tubes
 ◦ 3 EDTA plasma tubes (purple top)
 ◦ 3 serum separator tubes (marble top)
• Coban self-adherent wrap
• Rapid Malaria Screening Test
• Rapid HCV Screening Test
• Rapid HIV Screening Test
• Rapid HBsAg Screening Test
• Rapid RPR Test for syphilis
• Antiserum for ABO/Rh testing

DD Form 572: Blood Donation Record; EDTA: ethylenediaminetetraacetic acid; HBsAg: hepatitis B surface antigen; HCV: hepatitis C virus; HIV: human immunodeficiency virus; RPR: Rapid Plasma Reagin; Sharps: refers to sharp objects (needles, scalpel blades, disposable scissors, stylets, trocars, glass, etc).

Activation/Donor Screening
• An order to activate the walking blood bank must come from the medical providers caring for the intended recipient of fresh whole blood.
• Once the proper order is obtained in the laboratory from the appropriate medical staff, the recipient blood type must be obtained.
• Once the recipient ABO/Rh blood type is known, the walking blood bank is activated. Laboratory personnel will then interview donors for suitability to donate and review the modified DD Form 572, and determine if the donor is a GO or NO GO for donating whole blood.
• If the donor is accepted, record donor temperature, heart rate, and blood pressure on the modified DD Form 572 to ensure adequacy for donation: temperature <99.6 F, heart rate <100 beats per minute, and blood pressure ≤ 180/100 mm Hg.

Bag Issue
• For donors found to be suitable for donation:
 ◦ Verify donor with DD Form 572.
 ◦ Label the donor bag segment number from the collection line. The unit number should be linked to the donor card (DD 572) and be unique to that individual donation. Unit can get donor unit numbers from its supporting blood detachment.
Properly fill out the Emergency Blood Bank Donor Log. Annotate bag lot number, manufacturer, expiration date, and anticoagulant used on the donor’s modified DD Form 572.

Performing Phlebotomy

- Confirm with donor his/her full name, the last 4 digits of the Social Security Number (SSN), date of birth, and check against DD Form 572. Also, check to make sure all of the donor’s information is correctly recorded on the donor blood bag.
- Place blood pressure cuff on the donor’s arm. Pump cuff up to 40–60 mm/Hg and inspect arm for appropriate vein. Palpate vein. Release pressure.

NOTE: You may use a rubber tourniquet.

- Ask the donor if he/she has an allergy to iodine, Betadine, shellfish, or latex. If no allergies exist, use the Frepp/Sepp kit to prepare the donor arm for phlebotomy.
 - First take the scrubbing pad (Frepp) out of the wrapper without touching the pad. Break the ampule and scrub a 3-inch site for 30 seconds.
 - Then, take the ampule (Sepp), break it, and place it directly in the middle of the intended phlebotomy site. Starting in the middle of the phlebotomy site and moving in concentric circles, swab an area 3 inches in diameter without overlapping. Ensure that the entire area is covered with iodine Sepp.
 - Place 4 × 4 gauze over the site and allow to air dry.
 - **If an allergy to iodine, Betadine, or shellfish exists, an alcohol alternative or chlorhexidine product may be used.**
- Label all six blood collection tubes (3 red/marble top tubes and 3 lavender top tubes) with donor demographics:
 - Full name.
 - SSN.
 - Date/time of collection.
- Properly label the blood collection bag.
 - Ensure that the **date of collection** is written on the unit in the space provided and document the **time the phlebotomy was initiated** underneath the collection date.
 - Document the expiration date and time in the space identified on the right-hand side of the blood collection bag. **Expiration date is 24 hours after the date and time of collection.**
 - Do not write the donor’s blood type until the blood has been typed and tested.
 - After all labeling of the blood collection bag has been accomplished, apply hemostats approximately 6 inches above the needle.
- Donor blood unit and sample tube collection.
Pump blood pressure cuff up between 20–60 mm Hg. A rubber constricting band or tourniquet may be used instead of a blood pressure cuff.

- Verify vein again, **but do not repalpate**. Advise the donor to make a fist and squeeze several times. Then squeeze and hold.
- Twist off the needle cover and inspect the needle for barbs or other defects.
- Pull the skin taut below the venipuncture site. This helps prevent sudden movement of the arm and anchors the vein.
- With the bevel up, hold the needle at the hub. At approximately a 30°–45° angle, pierce the skin at the selected point of entry. When the bevel is completely under the skin, lower the angle of the needle to approximately 10° or less. With a steady push, advance the needle to penetrate the vein wall. Thread the needle approximately ½ inch inside the vein to maintain a secure position and to lessen the chance of a clot forming.
- Release the hemostat clamp on the collection bag tubing and observe the blood flow through the tubing and into the collection bag.
- If there is no blood flow, try adjusting the needle without hurting the donor, and seek assistance from another phlebotomist before discontinuing the procedure.

NOTE: A second venipuncture may be performed if there was an unsuccessful collection (no blood entered the collection bag), if donor agrees to a second venipuncture, and an acceptable vein is available on the opposite arm. **The second collection requires a new blood bag to prevent contamination of the unit!**

- Fill sample tubes using the tube adapter. After filling pilot tubes, verify once again that donor identification information on the tubes correspond to the donor identification information on the collection bag.
- Instruct the donor to relax his/her grip and to squeeze rhythmically every 3–5 seconds.
- Secure the needle to the donor’s arm with tape across the hub and/or on the tubing near the hub of the needle. The tape optimizes the positioning of the needle and prevents rotation of the needle while in the vein.
- Partially reduce the pressure by loosening the tourniquet or blood pressure cuff to approximately 20–40 mm Hg.
- Cover the phlebotomy site with a 4 × 4 gauze dressing, keeping the site clean and the needle out of view. Lift the gauze occasionally to monitor for evidence of a hematoma.
- Annotate on the DD Form 572 the time phlebotomy was started in the “start” block and supply the initials of the laboratory technician.
performing the phlebotomy. Ensure that the start time is annotated beneath the collection date on the collection bag.

- Monitor the donor for signs of discomfort or the onset of a donor reaction, such as dizziness or fainting.
- Manually mix the blood and anticoagulant every 90 seconds to prevent clotting in the line and bag.
- Watch for the scale to read an optimal volume of 450 mL (digital scale). For trip scales, the scale will drop, indicating the desired weight.
- Annotate the time the unit has reached the desired volume on the DD Form 572 in stop time block. **Acceptable units can have a volume between 405–495 mL.**
- Clamp the tubing 1 to 2 inches below the “Y” segment of tubing using the metal seal clips and the hand crimper.
- Strip a segment below the first clamp (away from the needle) and place another clamp in this location using a metal seal clip and a hand crimper. Then, cut the segging just below the first clamp closest to the needle, but between the two metal clamps.
- Connect the multisample Luer adapter to the tube holder. Remove covers and connect the multisample Luer adapter to the female Luer at the end of the donor sampling tubing. Break the ampule in the donor sampling tubing to open the blood pathway and insert the blood collection tube firmly into the tube holder. Remove sample tube when full. Repeat to collect additional samples (3 EDTA tubes and 3 red top tubes).
- Remove blood pressure cuff. Place fingers of 1 hand gently over the 4 × 4 gauze. **DO NOT apply pressure over the needle.** With the other hand, smoothly and quickly withdraw the needle.
- Apply firm pressure to the phlebotomy site and instruct the donor to maintain pressure on the phlebotomy site and extend the arm vertically. Instruct the donor **NOT** to bend the arm at the elbow to reduce/prevent the chance of a hematoma.
- On completion of venipuncture, shout “Sharps” and discard into a biohazard container.
- Using a hand stripper/crimper, strip all blood from the tubing into the primary collection bag and invert bag a minimum of 3 times.

Postdonor Care

- Apply pressure with fresh gauze on the collection site and wrap with Coban, ensuring a stable clot has formed.
- When the donor is ready to stand, have him/her walk to the designated recovery room and remain in the area under close supervision. Observe for signs of a reaction and ask donor how he/she feels.
- Instruct the donor on fluid replacement and light postdonation activities. Provide extra rest time for donors who have experienced a donor reaction:
either dizziness or fainting.

- Ensure the ability to rehydrate orally and walk with a steady gait without dizziness prior to discharge from the recovery room.

Performing Rapid Testing

- **When available: ABO/Rh** blood typing, and rapid testing for HIV (human immunodeficiency virus), HCV (hepatitis C virus), HBsAg (hepatitis B surface antigen), and malaria will be performed with documented appropriate results prior to the release of fresh whole blood from the laboratory. **Rapid testing for syphilis will be performed on each donor’s blood during the walking blood bank.** However, given the duration of time required to centrifuge the blood sample for this test and the batched nature of the test, results will be obtained prior to the conclusion of the walking blood bank, but not prior to release of the donor unit from the walking blood bank. **Follow appropriate testing standard operating procedures for each rapid test performed: ABO/Rh, HIV, HCV, HBV (hepatitis B virus), malaria, and RPR (Rapid Plasma Reagin) for syphilis.**

- Document test results of ABO/Rh and all infectious screening on the DD Form 572, in the Walking Blood Bank Donor Log Book, and on the donor’s blood bag.

- The laboratory technician performing each test will place his/her initials on the donor’s blood bag.

Releasing Whole Blood

- Label fresh whole blood bags as **VERIFIED.**
 - ABO/Rh result.
 - Results from rapid screening tests for HIV, HCV, malaria, and HBsAg.
 - The **initials** of the laboratory technician who performed each test (1 = technician performing ABO/Rh typing; 2 = technician performing infectious testing).
 - **Initials** of the laboratory technician who has verified each result (3 = technician performing blood bag stripping).
 - The **patient number** of the recipient patient.
 - **Donor’s full name.**
 - **Last 4 digits of the donor’s SSN.**
 - **Date of unit collection.**

- Only after all of the above labeling and cross-checks will the donor blood unit be released from the laboratory for transfusion.

- **Proper blood typing and infectious screening require time.** This is at times at odds with the deterioration of the recipient patient’s clinical status. In such circumstances, if the licensed clinical providers caring for the recipient patient deem it necessary to obtain fresh whole blood at a faster rate, they **may authorize** the emergency release of fresh whole blood from the walking blood bank after only ABO/Rh typing without the completion of all infectious screening tests. This is to be meticulously documented by
laboratory personnel, and they must obtain written documentation of this directive from the licensed provider(s) on the standard fresh whole blood release form. All fresh whole blood units released in this fashion will be documented as such in the Walking Blood Bank Log.

NOTE: Fresh whole blood may be kept stored at room temperature for up to 8 hours. However, it is highly recommended that units of fresh whole blood be stored immediately following collection at 1°–6°C for up to 24 hours.

Posttransfusion Verification

- All results from RPR rapid testing for syphilis will be reviewed prior to the completion of the walking blood bank. Any positive results will be relayed to the Lab Officer, with medical follow-up to be directed by the Lab Officer in conjunction with the Unit Chief of Professional Services (CPS).
- After completion of the walking blood bank, all donor blood units—or donor unit blood bags posttransfusion—will be returned to the laboratory.
- Laboratory personnel will verify the disposition of ALL donor units and document this in the Walking Blood Bank Log as:
 - Transfused.
 - Returned NOT transfused.
 - Held in laboratory and NOT released and why.
 - Sent with recipient patient in transport to another facility.
- All donor blood units transfused will be documented on the daily Blood Report.
- Regular contact will be maintained with the Blood Support Detachment to obtain follow-up results on confirmatory testing of donor blood samples.

Specimen Processing

- During whole blood collection, 6 tubes of blood will be drawn for further testing.
 - 3 red top tubes.
 - 3 EDTA tubes.
- Tubes will be spun down to separate serum/plasma from red blood cells.
- Serum will be collected and stored in appropriate blood tubes with the correlating donor modified DD Form 572 with proper refrigeration.
- A photographic copy of all modified DD Form 572’s will be made prior to shipment and maintained in electronic storage with a backup CD copy made after every walking blood bank.
- Specimens will be shipped to the Blood Support Detachment for shipment for FDA (US Food and Drug Administration)-licensed confirmatory testing.

Onsite Specimen Processing

- Spin down tubes for 10 minutes at 3,000 rpm’s.
- Using a transfer pipette, transfer serum from the spun-down specimen into a transfer tube. Label the transfer tube with the donor’s demographics.
Secure the cap on the transfer tube.
- Ship all specimens in a shipping container with cold packs as soon as possible to the Blood Support Detachment for further processing. Ensure that a copy of the donor’s DD Form 572, rapid testing result sheets, and the recipient information sheet are sent with the specimens.

Blood Donor Criteria

- **Appropriate donor criteria.**
 - Donor weight: ≥110 lbs.
 - Blood pressure: ≥180/100 mm Hg.
 - Pulse: 50–100 beats per minute (may be <50 if donor is athletic).
 - Temperature: <99.6 F.

- **Medications.**
 - Do not collect from donors currently on antibiotics, to exclude antimalarial prophylaxis.
 - Donors taking medications that competent medical authority deems may cause harm to the recipient must be deferred from donating.
 - **BE ADVISED:** If the purpose of the whole blood drive is to derive a source of platelets and clotting factors for a recipient, then donors who have taken aspirin in the last 72 hours should be deferred.

- **Recent donation.**
 - A single unit of whole blood or a blood component may be drawn from a single donor no more often than every 60 days.

References

For Clinical Practice Guidelines, go to http://usaisr.amedd.army.mil/clinical_practice_guidelines.html
Envoi

I would say that two contrary laws seem to be wrestling with each other nowadays: The one, a law of blood and death, ever imagining new means of destruction and forcing nations to be constantly ready for the battlefield—the other a law of peace, work, and health ever evolving new means of delivering man from the scourges which beset him. Which of these two laws will ultimately prevail God alone knows.

—Louis Pasteur
Appendix 1

Principles of Medical Ethics

Relevant to the Role of Health Personnel, Particularly Physicians, in the Protection of Prisoners and Detainees Against Torture and Other Cruel, Inhuman, or Degrading Treatment or Punishment

Adopted by the United Nations General Assembly, Resolution 37/194, December 18, 1982

Principle 1

Health personnel, particularly physicians, charged with the medical care of prisoners and detainees have a duty to provide them with protection of their physical and mental health and treatment of disease of the same quality and standard as is afforded to those who are not imprisoned or detained.

Principle 2

It is a gross contravention of medical ethics, as well as an offence under applicable international instruments, for health personnel, particularly physicians, to engage, actively or passively, in acts which constitute participation in, complicity in, incitement to, or attempts to commit torture or other cruel, inhuman, or degrading treatment or punishment.

Principle 3

It is a contravention of medical ethics for health personnel, particularly physicians, to be involved in any professional relationship with prisoners or detainees, the purpose of which is not solely to evaluate, protect, or improve their physical and mental health.

Principle 4

It is a contravention of medical ethics for health personnel, particularly physicians:

(a) to apply their knowledge and skills in order to assist in the interrogation of prisoners and detainees in a manner that may adversely affect the physical or mental health or condition of such prisoners or detainees and which is not in accordance with the relevant international instruments; and

(b) to certify, or to participate in the certification of, the fitness of prisoners or detainees for any form of treatment or punishment that may adversely affect their physical or mental health and which is not in accordance with the relevant international instruments, or to participate in any way in the infliction of any such
treatment or punishment that is not in accordance with the relevant international instruments.

Principle 5

It is a contravention of medical ethics for health personnel, particularly physicians, to participate in any procedure for restraining a prisoner or detainee unless such a procedure is determined in accordance with purely medical criteria as being necessary for the protection of the physical or mental health or the safety of the prisoner or detainee himself, of his fellow prisoners or detainees, or of his guardians, and presents no hazard to the physical or mental health of the prisoner/detainee.

Principle 6

There may be no derogation from the foregoing principles on any ground whatsoever, including public emergency.

Declaration on the Protection of All Persons From Being Subjected to Torture and Other Cruel, Inhuman, or Degrading Treatment or Punishment

Adopted by the United Nations General Assembly, Resolution 3452 (XXX), December 9, 1975

Article 1

(a) For the purpose of this Declaration, torture means any act by which severe pain or suffering, whether physical or mental, is intentionally inflicted by or at the instigation of a public official on a person for such purposes as obtaining from him or a third person information or confession, punishing him for an act he has committed or is suspected of having committed, or intimidating him or other persons. It does not include pain or suffering arising only from, inherent in or incidental to, lawful sanctions to the extent consistent with the Standard Minimum Rules for the Treatment of Prisoners.

(b) Torture constitutes an aggravated and deliberate form of cruel, inhuman, or degrading treatment or punishment.

Article 7

Each State shall ensure that all acts of torture as defined in Article 1 are offences under its criminal law. The same shall apply in regard to acts which constitute participation in, complicity in, incitement to, or an attempt to commit torture.

The information contained herein is adapted from the Office of the United Nations High Commissioner for Human Rights (Geneva, Switzerland).
Appendix 2

Glasgow Coma Scale

<table>
<thead>
<tr>
<th>Component</th>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor response</td>
<td>Obeys verbal command</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Localizes pain</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Flexion-withdrawal</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Flexion (decortication)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Extension (decerebration)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No response (flaccid)</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>(1–6)</td>
</tr>
<tr>
<td>Eye opening</td>
<td>Spontaneously</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>To verbal command</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>To pain</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>(1–4)</td>
</tr>
<tr>
<td>Best verbal response</td>
<td>Oriented and converses</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Disoriented and converses</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inappropriate words</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Incomprehensible sounds</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No verbal response</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>(1–5)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>(3–15)</td>
</tr>
</tbody>
</table>

Appendix 3

Department of Defense Trauma Registry

General

Evidence-based medicine allows for identification of best practices and the timely formulation of clinical practice guidelines. Unfortunately, because of the realities of combat trauma, timely and accurate data collection and interpretation of results are difficult. Quality information on casualties for combatant commanders is essential because it facilitates optimal placement, utilization, and resupply of scarce medical resources, and rapid identification of new trends in wounding, prevention, and treatment. Timely, accurate, aggregated theater information is necessary to shorten quality improvement cycles and improve outcomes.

Furthermore, aggregation, evaluation, and reporting of these data provide rapid feedback for providers across the entire chain of care and evacuation in the Joint Trauma System (JTS). Application of these principles to the battlefield, using a set of jointly approved data elements as a means to drive concurrent performance improvement within the JTS, has been a major advancement of the recent conflicts in Afghanistan and Iraq. This effort has lead to the adaption of technology and the training of specialists to serve the mission of timely and accurate collection of combat injury data. The trauma documentation tool that facilitates this process should be used as the trauma medical record (for both battle and nonbattle injuries) and should accompany the casualty throughout the chain of care and evacuation.

Situational Awareness

The revolution in warfighting that has digitized the battlefield to display friendly positions, intelligence, and engagements electronically has not been equally applied to the casualty care side of the equation. This places demands on medical organizations to provide online and continuously updated status and location information on killed, wounded, ill, and psychologically impaired combatants and noncombatants, including both the casualty loss to the unit and the return-to-duty patient. This need will only escalate as medical situational awareness plays an increasing role in the tactical risk assessment process. At a minimum, commanders should be able to assess the case fatality rate (CFR; fraction of an exposed group—all those wounded in action [WIA] who die—a measure of the lethality of the battlefield; the calculation includes those WIA individuals who are returned to duty [RTD]) percentage killed in action (KIA; died before reaching medical care/force wounded) and percentage died of wounds (DOW; died after
reaching medical care/force wounded) in order to measure risk associated with operations and the capability of the medical force to control mortality.

\[
\text{CFR} = \frac{(\text{KIA} + \text{DOW})}{(\text{KIA} + \text{WIA})} \times 100
\]

\[
\%\text{KIA} = \frac{(\text{Deaths before MTF})}{\text{KIA} + (\text{WIA} - \text{RTD})} \times 100
\]

\[
\%\text{DOW} = \frac{(\text{Deaths after MTF})}{(\text{WIA} - \text{RTD})} \times 100,
\]

where MTF is defined as medical treatment facility or any fixed facility with a medical provider.

Categorization of casualties by type and distribution of injury within the major body regions (ie, face, head and neck, chest, abdomen and pelvis, upper and lower extremities, and skin) enables analysis of injury patterns and assessment of injury severity that can be utilized to design prevention applications and care interventions, thus decreasing the burden of injury, morbidity, and mortality.

Other Uses

Data on types of wounds, their causes, and appropriate procedures have potential value in constructing predictive models for medical force development and placement, logistical delivery systems, and research on improved medical and surgical interventions and prevention. The history of improvements in medicine and surgery are grounded on the battlefield, and dissemination should not be limited to the isolated innovator with a personal spreadsheet for documentation. Individual providers at individual medical treatment facilities have long recorded clinical data and observations. This Department of Defense Trauma Registry (DoDTR) is an organized and coordinated effort to facilitate documentation of information that is aggregated into the registry that provides the means to better understand the effectiveness of prevention measures and casualty care, as well as the burden of injury, morbidity, and mortality in a population.

Minimum Essential Data

In addition to recording the standard contents of the postprocedure note (ie, who did what, on whom, why, and a plan), the standard data components of a trauma registry are especially helpful (eg, demographics, circumstance and mechanism of injury, injury severity, prehospital monitoring and care, hospital monitoring and care, outcome, participants, direct assessment against standards). Figure A3-1 is a sample of the form that serves as both the trauma medical record and as a source for data capture. The minimum essential elements present on this form have been agreed upon by the US Army, the US Air Force, and the US Navy; official Department of Defense (DoD) forms are pending. Data are collated into the registry, evaluated, and reported by the JTS.

Recommended Methods and Technology
The process to document emergency trauma care can be used on either the immature or mature battlefield. This would entail utilizing paper or computer-assisted electronic technology, respectively. In the ideal environment, this would be a single-step process. Reality is much different. It is important to recognize that documentation should occur across the chain of care and evacuation, whereas aggregation of data should occur at the first level of care that can support such activity. At a minimum, paper documentation should be used for each casualty, and the chart should accompany the patient to the rear as evacuation occurs. When effective electronic records are available, this process will be expedited and simplified.
RESUSCITATION RECORD
Part I: Nursing Flow Sheet

4.1. HEAD/NECK
- Consciousness: [] Normal [] Comatose
- Eye Contact: [] Yes [] No

4.2. BREATH/SKIN
- Rhythm: [] Normal [] Tachypneic [] Bradypneic [] Other
- Pulse: [] Normal [] Increased [] Decreased [] Other

4.3. MEDICATIONS
- Type: [] Oral [] I.V. [] Other
- Route: [] Oral [] I.V. [] Other

4.4. ALLERGIES
- Known: [] Yes [] No
- History of Allergies: [] Family History [] Personal History

4.5. CURRENT MEDICATIONS
- List: [] Yes [] No
- Medications: [] Yes [] No

4.6. PROCEDURES
- Procedure: [] arterial catheter placement [] endotracheal intubation
- Time: [] 00:00 [] 00:01

4.7. OXYGEN THERAPY
- Type: [] Nasal cannula [] Ventilator
- Flow: [] Normal [] High [] Low

4.8. HEMORRHAGE CONTROL
- Type: [] Direct Pressure [] Tourniquet [] Medication
- Time: [] 00:00 [] 00:01

PATIENT IDENTIFICATION
- Name: [] [] [] []
- Location: [] [] [] []
- Date of Birth: [] [] [] []
- SSN: [] [] [] []
RESC U T R A C T E H R E R O C R D
Part 1: Nursing Flow Sheet

4.4 ABG/CHB

<table>
<thead>
<tr>
<th>Time</th>
<th>pH</th>
<th>pCO₂</th>
<th>pO₂</th>
<th>BE</th>
<th>HCO₃⁻</th>
<th>SB</th>
<th>SAT</th>
</tr>
</thead>
</table>

4.10 INTRAVENOUS ACCESS AND FLUIDS

<table>
<thead>
<tr>
<th>Time</th>
<th>Rate</th>
<th>Gauge</th>
<th>Site</th>
<th>Infus.</th>
<th>Amount</th>
<th>Unit</th>
<th>Time</th>
<th>Initial</th>
</tr>
</thead>
</table>

4.11 BLOOD PRODUCTS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type</th>
<th>Start</th>
<th>Stop</th>
<th>Volume</th>
<th>Initial</th>
</tr>
</thead>
</table>

4.12 MEDICATIONS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Route</th>
<th>Time</th>
<th>Initial</th>
</tr>
</thead>
</table>

4.13 VITAL SIGNS

<table>
<thead>
<tr>
<th>Time</th>
<th>GCS</th>
<th>BP</th>
<th>P</th>
<th>R</th>
<th>Temp</th>
<th>SpO₂</th>
<th>Altura</th>
<th>Other (DO)</th>
</tr>
</thead>
</table>

4.14 LABS

<table>
<thead>
<tr>
<th>Test</th>
<th>Unit</th>
<th>Time</th>
<th>Initial</th>
</tr>
</thead>
</table>

4.7 DISCHARGE INFORMATION

<table>
<thead>
<tr>
<th>Time of Discharge</th>
<th>Mortuary Affairs Notified</th>
<th>Time to Morgue</th>
</tr>
</thead>
</table>

4.9 REMARKS

<table>
<thead>
<tr>
<th>DRPT</th>
<th>Patient Location</th>
<th>Name</th>
<th>Note</th>
<th>Signature</th>
</tr>
</thead>
</table>

Patient Identification

<table>
<thead>
<tr>
<th>Name</th>
<th>Last</th>
<th>First</th>
<th>MI</th>
<th>Patient ID/SSN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPN</th>
<th>Facility Location</th>
<th>Name</th>
<th>Date of Birth</th>
<th>Name Signature</th>
</tr>
</thead>
</table>
1. HISTORY & PHYSICAL - INJURY DESCRIPTION

1.1. PRE-ARRIVAL
Date:
Time of Arrival:

1.2. INITIAL CATEGORIZATION
- Immediate
- Delayed
- Minimal
- Wounded

1.3. BRIEF COMPARE/STORY AND PRESENTING SIGNS/SYMPTOMS

1.4. PHYSICAL EXAMINATION
- Head
- Neck
- Chest
- Abdomen/Back/Spine
- Pelvis
- Upper Extremities
- Lower Extremities
- Interventions Prior to Arrival

1.5. PUPILS/VISION
- Size
- Reaction
- Light Perception
- Size
- Affected Eye

1.6. EXTREMITIES
- Motor
- Sens
- ICW

Pulse Present:
- Atrial
- Ventricular
- Bradycardic

1.7. BURN
- Size
- Depth
- Percentage of Body
- Cause

PATIENT IDENTIFICATION
Name:
Date of Birth:
Gender:
Physician Signature:

Facility Name:
Facility Location:
Physician Signature:
Fig. A3-1. Sample resuscitation record.
Abbreviations and Acronyms

A
ABC: airway, breathing, circulation
ABCA: America, Britain, Canada, Australia
Abd: abdomen
ABD: autologous blood donation
ABG: arterial blood gas
A/C: assist/control
AC: hydrogen cyanide
ACE: angiotensin-converting enzyme
ACLS: Advanced Cardiac Life Support
ACS: abdominal compartment syndrome
ADH: antidiuretic hormone
ADMIN: administrative personnel
AE: aeromedical evacuation
AELT: Aeromedical Evacuation Liaison Team
AF: US Air Force
AFB: Air Force Base
AFI: Air Force Instruction
AFJI: Air Force Joint Instruction
AFP: Department of the Air Force pamphlet
AFRICOM: Africa Command
AIR EVAC: air evacuation
ALI: acute lung injury
amps: ampules
AMS: acute mountain sickness
AOR: area of responsibility
AP: anteroposterior
aPLTs: apheresis platelets
AR: Army Regulation
ARDS: acute respiratory distress syndrome
ARDSNet: Acute Respiratory Distress Syndrome Network ARF: acute renal failure
ARG: Amphibious Ready Group
ASAP: as soon as possible
ASF: Aeromedical Staging Facility
ATLS: Advanced Trauma Life Support
ATN: acute tubular necrosis
ATNAA: Antidote Treatment Nerve Agent Autoinjector

B
BICEPS: Brief-Immediate-Central-Expectant-Proximal-Simple
bid/BID: twice a day
B.I.G.: Bone Injection Gun
BL: bladder
BP: blood pressure bpm: beats per minute; breaths per minute
BUN: blood urea nitrogen
BURP: Backward Upward Rightward Pressure
BW: biological warfare
BZ: benzodiazepine; 3-quinuclidinyl benzilate

C
Cal: caliber
CAR: cabin altitude restriction
CASEVAC: casualty evacuation
Cath: catheter
CBF: cerebral blood flow
CCATT: Critical Care Air Transportation (or Transport) Team
CENTCOM: US Central Command
CFR: case fatality rate
CG: phosgene
CHF: congestive heart failure
CK: creatinine phosphokinase; cyanogen chloride
CK: creatinine kinase
CNS: central nervous system
C.O.: cardiac output
CO₂: carbon dioxide
COCOM: Combatant Command
CONUS: continental United States
COPD: chronic obstructive pulmonary disease
CPAP: continuous positive airway pressure
CPDA-1: citrate-phosphate-dextrose-adenine
CPG: Clinical Practice Guideline(s)
CPK: creatinine phosphokinase
CPP: cerebral perfusion pressure
CPR: cardiopulmonary resuscitation
CPS: Chief of Professional Services
CrCl: creatinine clearance
Cre/Cr: creatinine
CRNA: Certified Registered Nurse Anesthetist
CRTS: Casualty Receiving and Treatment Ship
CRVAP: combat-related ventilator-associated pneumonia
CSF: cerebrospinal fluid
CSH: Combat Support Hospital
C-spine: cervical spine
CSW: cerebral salt wasting
CT: computed tomography
CTA: computed tomography angiography/angiogram
CVA: cerebrovascular accident
CVN: this is a ship’s hull classification symbol; C = aircraft carrier, V = fixed wing, N = nuclear powered
CX: phosgene oxide
CXR: chest X-ray
D5: 5% dextrose
D5NS: 5% dextrose in normal saline
D5W: 5% dextrose in water
D5½ NS: 5% dextrose in ½ normal saline solution
DA: Department of the Army
DA PAM: Department of the Army pamphlet
Dbili: direct bilirubin
DBP: diastolic blood pressure
DCCS: Deputy Commander for Clinical Services
DCN: Deputy Commander of Nursing
DCS: damage control surgery
DD Form: Department of Defense Form
DD Form 572: Blood Donation Record
DDAVP: 1-deamino-8-D-arginine vasopressin (or Desmopressin)
Ddx: differential diagnosis
DECON: decontamination
DIC: diffuse/disseminated intravascular coagulation
DKA: diabetic ketoacidosis
DO₂: oxygen delivery
DOB: date of birth
DoD: Department of Defense
DoDTR: Department of Defense Trauma Registry
DOW: died of wounds
DP: diphosgene
DPA: diagnostic peritoneal aspiration
DSN: Defense Switched Network
DVA: Department of Veterans Affairs
DVT: deep venous thrombosis
E
EAC: Echelon Above Corps (or echelon of care)
ECFV: extracellular fluid volume
ECG: electroencephalogram
ECHO: echocardiogram
ED: Emergency Department
EDTA: ethylenediaminetetraacetic acid
EKG: electrocardiogram
ELISA: enzyme-linked immunosorbent assay
EMEDS: Expeditionary Medical Support
EMT: Emergency Medical Technician
ENT: ear-nose-throat
EOD: explosive ordnance disposal
ePTFE: expanded polytetrafluoroethylene
EPW: enemy prisoner of war
ER: emergency room
ERC: en route care
ERG: Expeditionary Ready Group
ET: endotracheal
ETT: endotracheal tube
EUCOM: European Command

FAST: Focused Abdominal Sonography for Trauma
FDA: US Food and Drug Administration
FeNa: fractional excretion of sodium
FFP: fresh frozen plasma
FiO₂: fraction of inspired oxygen; inspired oxygen
FM: field manual
FMC: full metal case
Fr: French gauge
FS: Flight Surgeon
FST: Forward Surgical Team
FWB: fresh whole blood

G
GA: tabun
GB: sarin
GCS: Glasgow Coma Scale
GD: soman
GF: cyclosarinor cyclohexyl sarin
GI: gastrointestinal
GOS: Glasgow Outcomes Score
GPW: Geneva Convention Relative to the Treatment of Prisoners of War
gr: grains
GSW: gunshot wound
gtt: drops (from the Latin *guttae*)
GWS: Geneva Convention for the Amelioration of the Wounded and Sick in Armed Forces in the Field

H
H₂O: water
HACE: high-altitude cerebral edema
HAPE: high-altitude pulmonary edema
HBsAg: hepatitis B surface antigen
HBV: hepatitis B virus
HCV: hepatitis C virus
HD/H: sulfur mustard
HEAT: high explosive antitank
Hgb: hemoglobin
H/H: hematocrit/hemoglobin
HHS: hyperglycemic hyperosmolar syndrome
HIDA: hepatobiliary iminodiacetic acid
HIPAA: Health Insurance Portability and Accountability Act
HIT: heparin-induced thrombocytopenia
HIV: human immunodeficiency virus
HN: nitrogen mustard
HR: heart rate
HTS: hypertonic saline
HUB: Hospital Unit–Base
HUS: Hospital Unit–Surgical

I
iCa: hypocalcemia
ICFV: intracellular fluid volume
ICP: intracranial pressure
ICU: intensive care unit
ICW: intermediate care ward
I:E: inspiration:expiration
IED: improvised explosive device
IM: intramuscular
IMA: inferior maxillary artery
IMV: intermittent mandatory ventilation
INR: International Normalized Ratio
IO: intraosseous
I&O: intake and output
ISBT: International Society of Blood Transfusion
IV: intravenous
IVC: inferior vena cava
IVV: intravascular volume

J
JP: Jackson-Pratt
JTS: Joint Trauma System
JTTR: Joint Theater Trauma Registry
JTTS: Joint Theater Trauma System

K
K: clot time; potassium
KCl: potassium chloride
KIA: killed in action
KUB: kidneys, ureters, bladder (a frontal supine radiograph)
K-wires: Kirschner wires

L
L: Lewisite
LA: left atrium
LAT: lateral
LD: lethal dose
LHA: label for a Tarawa class ship
LHD: landing helicopter deck
LMA: laryngeal mask airway
LR: lactated Ringer’s
LUQ: left upper quadrant
LV: left ventricle
LZ: landing zone

M
MA: maximal amplitude
MAC: minimal alveolar concentration
MAP: mean arterial pressure
MCO: Marine Corps Order
meds: medicine
MEDEVAC: medical evacuation
MEF: Marine Expeditionary Force
MESS: Mangled Extremity Severity Score
MF2K: Medical Force 2000
MFST: Mobile Field Surgical Team
MMF: maxillary-mandibular fixation
MOPP: Mission-Oriented Protective Posture
MRI: magnetic resonance imaging
MRSA: methicillin-resistant *Staphylococcus aureus*
MTF: medical treatment facility
MVA: motor vehicle accident
MvO₂: mixed venous oxygen delivery
N

N_2O: nitrous oxide

N/A: not applicable

Na: sodium

NaCl: sodium chloride

NaHCO$_3$: sodium bicarbonate

NATO: North Atlantic Treaty Organization

NAVMED P: Department of the Navy publication

NBC: nuclear, biological, and chemical

NCO: noncommissioned officer

NG: nasogastric

NHLBI: National Heart, Lung, and Blood Institute

NIH: National Institutes of Health

NIPR: Nonsecure Internet Protocol Router

NOE: naso-orbital-ethmoid

NP: neuropsychiatric

NPO: nothing by mouth

NPWT: negative pressure wound therapy

NS: normal saline

NSAIDs: nonsteroidal antiinflammatory drugs

NSTEMI: non-ST elevation myocardial infarction

O

O_2: oxygen

OB/GYN: obstetrics/gynecology

OCONUS: outside the contiguous United States

ODD: once daily dosing

OEF: Operation Enduring Freedom

OET: oxygen economizer tube

OIF: Operation Iraqi Freedom

OPNAVINST: Office of the Chief of Naval Operations Instruction

OR: operating room
P

PA: Physician’s Assistant; pulmonary artery; posteroanterior
PaCO₂: partial arterial gas pressure (tension) of carbon dioxide
PACOM: Pacific Command
2-PAMC: pralidoxime chloride
PaO₂: partial pressure of oxygen in the blood or in arterial blood
PBW: predicted body weight
PCWP: pulmonary capillary wedge pressure
pCXR: portable chest X-ray
PE: pulmonary embolism
PEEP: positive end-expiratory pressure
PHTLS: Pre-Hospital Trauma Life Support
PI: performance improvement
PM: preventive medicine; Program Manager
PMMA: poly(methyl methacrylate)
PMRC: Patient Movement Requirements Center
PNT: penetrating neck trauma
po/PO: per os (by mouth)
post-op: postoperative
Pplat: plateau pressure
PRBCs: packed red blood cells
PR interval: measured from the beginning of the P wave to the beginning of the QRS complex
PRN: as needed
PS: pressure support; chloropicrin
PSI: pounds per square inch
PvO₂: mixed venous oxygen tension

Q

q4h: every 4 hours
q6h: every 6 hours
q8h: every 8 hours
q12h: every 12 hours
qd: every day
qhs: at bedtime
qid/QID: 4 times a day
QRS complex: combination of three graphical deflections on an electocardiogram; represents ventricular depolarization
QT interval: measure of time between start of Q wave and end of T wave

R
R: reaction time; radius/radial
R4: right patient, right place, right time, right care
RA: regional anesthesia; right atrium
RBC: red blood cell
RDD: radiological dispersal device
Resus: resuscitation
rFVIIa: recombinant factor VIIa
RN: Registered Nurse
RPG: rocket-propelled grenade
rpm: revolutions per minute
RPR: Rapid Plasma Reagin
RR: respiratory rate
RSDL: Reactive Skin Decontamination Lotion
RSI: Rapid Sequence Intubation
RTD: return to duty
RUQ: right upper quadrant
RV: right ventricle

S
SaO$_2$: percentage of oxygen saturation of hemoglobin
SBP: systolic blood pressure
SCH: subconjunctival hemorrhage
SCre: serum creatinine
ScvO$_2$: central venous oxygen saturation
SEAL: SEa, Air, Land
SG: Surgeon General
Sharps: refers to sharp objects, such as needles, scalpel blades, disposable scissors, stylets, trocars, broken test tubes, glass, etc.
SIMV: synchronized intermittent mandatory ventilation
SNa: serum sodium
SOD: Surgeon of the Day
SOP: standard operating procedure
SPEARR: Small Portable Expeditionary Aeromedical Rapid Response (team)
SpO₂: noninvasive pulse oximetry
spp.: species
SSN: Social Security Number
STANAG: Standardization Agreement
STEMI: ST elevation myocardial infarction
STRATEVAC: strategic evacuation
ST segment: connects the QRS complex and the T wave
SvO₂: mixed venous oxygen saturation of hemoglobin
T
TA: thoracoabdominal (stapler)
TBI: traumatic brain injury
Tbili: total bilirubin
TBSA: total body surface area
TCCC: Tactical Combat Casualty Care
TEG: thromboelastogram
THAM: tromethamine
tid/TID: three times a day
TMD: Theater Medical Director or Trauma Medical Director
TMDS: Theater Medical Data Store
TNC: Trauma Nurse Coordinator
TO: Theater of Operations
TOW: tube-launched, optically tracked, wire-guided (missile)
trach collar: tracheostomy collar
TRALI: transfusion-related acute lung injury
TTP: thrombotic thrombocytopenic purpura

U
U: ulnar/units
UCre: urine creatinine
UNa: urine sodium
UOP: urine output
UPAC: Universal Portable Anesthesia Complete
US: United States; ultrasound
USAF: US Air Force
USAISR: US Army Institute of Surgical Research
USMC: US Marine Corps
USNS: US Navy ship
USTRANSCOM: US Transportation Command
UV: ultraviolet
UXO: unexploded ordnance

V
VAC: Vacuum-Assisted Closure
VAP: ventilator-associated pneumonia
VCO₂: carbon dioxide production
Vd: deadspace volume
Ve: minute volume
VEE: Venezuelan equine encephalitis
Vel: velocity
VHF: viral hemorrhagic fever
VO₂: oxygen uptake
VRE: vancomycin-resistant enterococci
V₁: tidal volume
VX: methylphosphonothioic acid

W
WDMET: Wound Data and Munitions Effectiveness Team
WIA: wounded in action
Wt: weight
Significant Military Medical Terms

aeromedical evacuation: the movement of patients under medical supervision to and between medical treatment facilities by air transportation.

casualty category: used to specifically classify a casualty for reporting purposes based on the casualty type and the casualty status. Casualty categories include killed in action, died of wounds received in action, and wounded in action.

casualty evacuation: the unregulated movement of casualties that can include movement both to and between medical treatment facilities. Also known as CASEVAC.

died of wounds received in action: a casualty category applicable to a hostile casualty, other than the victim of a terrorist activity, who dies of wounds or other injuries received in action after having reached a medical treatment facility. Also known as DOW.

killed in action: a casualty category applicable to a hostile casualty, other than the victim of a terrorist activity, who is killed outright or who dies as a result of wounds or other injuries before reaching a medical treatment facility. Also known as KIA.

MEDEVAC: medical evacuation.

medical evacuees: personnel who are wounded, injured, or ill and must be moved to or between medical facilities.

medical treatment facility: a facility established for the purpose of furnishing medical and/or dental care to eligible individuals. Also known as MTF.

wounded in action: a casualty category applicable to a hostile casualty, other than the victim of a terrorist activity, who has incurred an injury due to an external agent or cause. The term encompasses all kinds of wounds and other injuries incurred in action, whether there is a piercing of the body, as in a penetration or perforated wound, or none, as in a contused wound. These include fractures, burns, and blast concussions (all effects of biological and chemical warfare agents), and the effects of an exposure to ionizing radiation or any other destructive weapon or agent. The hostile casualty’s status may be categorized as “very seriously ill or injured,” “seriously ill or injured,” “incapacitating illness or injury,” or “not seriously injured.” Also known as WIA.
<table>
<thead>
<tr>
<th>Product Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcon Laboratories, Inc, Fort Worth, TX — Mydriacyl, Cyclogyl</td>
</tr>
<tr>
<td>Allergan, Inc, Irvine, CA — Ocuflox</td>
</tr>
<tr>
<td>Ambu, Cambridgeshire, UK — Ambu E-valve, Ambu bag</td>
</tr>
<tr>
<td>Ambu, Inc, Glen Burnie, MD — Ambu bag</td>
</tr>
<tr>
<td>Applied Science, Inc, Grass Valley, CA — HemoFlow</td>
</tr>
<tr>
<td>Arizant Healthcare, Inc, Eden Prairie, MN — Bair Hugger</td>
</tr>
<tr>
<td>Bayer HealthCare LLC, Morristown, NJ — Neo-Synephrine</td>
</tr>
<tr>
<td>Blizzard Protection Systems Ltd, Bethesda, Gwynedd, UK — Blizzard Survival Blanket</td>
</tr>
<tr>
<td>Block Scientific, Inc, Bohemia, NY — i-STAT Blood Gas Analyzer</td>
</tr>
<tr>
<td>Bovie Medical Corporation, Clearwater, FL — Bovie cauterizer</td>
</tr>
<tr>
<td>Cardinal Health, Dublin, OH — Frepp/Sepp Antiseptic Applicator Kit, Jamshidi disposable sternal/iliac aspiration needle, Esmark bandages</td>
</tr>
<tr>
<td>CareFusion, Leawood, KS — Iodine Sepp</td>
</tr>
<tr>
<td>CERTEC, Sourcieux-les-Mines, France — CERTEC SA bag</td>
</tr>
<tr>
<td>Codman, Raynham, MA — ICP Monitoring System, ICP Express</td>
</tr>
<tr>
<td>Cook Critical Care, Bloomington, IN — Cook IO needle, Sur-Fast needle</td>
</tr>
<tr>
<td>Covidien, Mansfield, MA — KERLIX, Hi-Lo Tracheal Tube</td>
</tr>
<tr>
<td>Draeger Medical, Inc, Telford, PA — Fabius Tiro M</td>
</tr>
<tr>
<td>DRE, Inc, Louisville, KY — Drager Narkomed anesthesia machine</td>
</tr>
<tr>
<td>E. I. duPont de Nemours and Company, Wilmington, DE — Kevlar</td>
</tr>
<tr>
<td>Electra House, Crewe, UK — Celox</td>
</tr>
<tr>
<td>Ethicon, Inc, Somerville, NJ — Surgicel, PDS sutures, MONOCRYL, PROLENE</td>
</tr>
<tr>
<td>GE Healthcare, Laurel, MD — Ohmeda Universal Portable Anesthesia Complete</td>
</tr>
<tr>
<td>Healthcare Services, Mineral Wells, TX; Waismed Ltd/PerSys Medical, Houston, TX — Bone Injection Gun</td>
</tr>
<tr>
<td>Hospira, Inc, Lake Forest, IL — Hextend (hetastarch)</td>
</tr>
<tr>
<td>Impact Instrumentation, Inc, West Caldwell, NJ — Impact 754 Eagle Uni-Vent Ventilator</td>
</tr>
</tbody>
</table>
Invista, Wichita, KS — Dacron
Johnson & Johnson, New Brunswick, NJ — TYLENOL, Polysporin
Kinetic Concepts, Inc/KCI Licensing, Inc, San Antonio, TX — Wound VAC Therapy System
LMA North America, Inc, San Diego, CA — Fastrach Laryngeal Mask
McNeil Healthcare, Inc, Waterford, CT — Kittner sponge
Med TechSweden, Inc, Geneseo, IL — Vacuum Spine Board
Mölnlycke Health Care US, LLC, Norcross, GA — Hibiclens
Ortho-Clinical Diagnostics, Inc, Rochester, NY — RhoGAM
Pall Corporation, Port Washington, NY — Pall Heat and Moisture Exchange Filter
PMC, Sunnyvale, CA — Adaptec
Portable Hyperbarics, Inc, Ilion, NY — Garnow bag
PyngMedical, Richmond, British Columbia, Canada — FAST1
SonoSite, Inc, Bothell, WA — SonoSite duplex ultrasound device
TECHStyles, Addison, TX — TECHStyles Thermo-Lite Hypothermia Prevention System
TechTrade LLC, New York, NY — Ready-Heat self-warming medical blanket
Terumo Medical Products, Somerset, NJ — VENOJECT Luer Adapter, Luer Adapter Hub, Terumo single blood bag
Thermogear, Inc, Lake Oswego, OR; Microtek Medical, Columbus, MS — ChillBuster
3M Company, St Paul, MN — Ioban, ACE wrap, Coban self-adherent wrap
TraumaCure, Inc, Bethesda, MD — WoundStat
Verathon, Inc, Bothell, WA — GlideScope Ranger
Vida-Care, San Antonio, TX — EZ-IO device
W. L. Gore & Associates, Inc, Elkton, MD — PTFE, GORE-TEX
Z-Medica Corporation, Wallingford, CT — QuikClot Combat Gauze
Index

A

A/C. See Assist-control positive-pressure ventilation

Abdominal closure, 274–275

Abdominal compartment syndrome burns and, 388

Abdominal hysterectomy, 294–296

Abdominal injuries

 abdominal closure, 274–275
 antimicrobial agent selection and duration, 119
 biliary tract, 270
 colon, 271–272
 CT scans, 264
 damage control surgery, 178–179
 diagnosis of, 258
 diagnostic adjuncts, 259
 diagnostic peritoneal aspiration, 263–264
 duodenal, 267–268
 exposure techniques, 265–266
 focused abdominal sonography for trauma, 259–263
 gastric injuries, 266
 indications for laparotomy, 258
 liver, 269–270
 operative planning, 265–266
 pancreatic, 268–269
 penetrating, 257
 rectal, 272–273
 retroperitoneal, 273–274
 small bowel, 271
 splenic, 271
wound exploration, 265
ABO incompatibility, 484–485
ABO typing, 470–471, 480
Abrasions, corneal, 208–209
AC. See Hydrogen cyanide
Acalculous cholecystitis, 164
Acceleration stress
 aeromedical evacuation and, 50
Acclimatization, 404–405
Acidosis
 blood transfusions and, 474–476
 mechanical ventilation and, 145
Acinetobacter, carbapenem-resistant, 123
ACS monitoring, 180–181
Acute coronary syndrome, 155–159
Acute hemolytic transfusion reaction, 484–485
Acute lung injury, 143, 486–487
Acute mountain sickness, 416–418
Acute respiratory distress syndrome, 143, 146–147
Acute tubular necrosis, 165–166, 168
Acute vaginal hemorrhage, 297–298
Adnexal injuries, 293, 295
Adrenal insufficiency, 172
Advanced Trauma Life Support, 455
AE. See Aeromedical evacuation
AELT. See Aeromedical Evacuation Liaison Team
Aeromedical evacuation. See also Patient evacuation
 Air Force system, 51–55
 clearance, 54
 description of, 47
 humanitarian transport requests, 58
implications of the aviation environment, 49–51
intertheater transport checklist, 57
local flight surgeon responsibilities, 54
medical considerations, 48–49
patient movement requirements, 54
patient requests, 54–55
patient selection, 55–56, 58–59
patient stability, 53
precedences, 51–55
process, 54
reporting a patient, 52–53
validation, 54

Aeromedical Evacuation Liaison Team, 52–53
Aeromedical Staging Facilities, 52

Air Force
aeromedical evacuation system, 51–55
basic primary care, 21–22
Expeditionary Medical Support, 21–22, 26
theater hospitals, 26

Air splints, 50

Aircraft carrier battle groups, 22

Airway management
Backward Upward Rightward Pressure maneuver, 64–65
difficult airway, 66–67, 94
direct laryngoscopy, 64
facial injuries and, 183–184
heatstroke and, 407
indications for a definitive airway, 89–90
initial, 61–62
laryngeal mask airway, 68
orotracheal intubation, 63–66
rapid sequence intubation, 63, 90–94
secondary airway compromise, 90
surgical cricothyrotomy, 67–68
two-person mask ventilation, 62–63
ventilation, 62–63
AK-47 rifles, 10
Albumin, 134
Albumin volume
 burn care, 383–384
ALI. See Acute lung injury
Alkalosis
 mechanical ventilation and, 145
Allergic transfusion reactions, 487–488
Allied contractors
 triage considerations, 33
Altitude illness
 acute mountain sickness, 416–418
 altitude basics, 414–415
 descent basics, 415–416
 high-altitude bronchitis, 419
 high-altitude cerebral edema, 423–425
 high-altitude peripheral edema, 419
 high-altitude pharyngitis, 419
 high-altitude pulmonary edema, 421–423, 425
 high-altitude retinal hemorrhage, 419–420
 subacute mountain sickness, 420–421
 thromboembolic events, 420
Amnestic, 92
Amphibious Ready Group, 22
Amputations
 battlefield amputations, 342
dressings, 345
indications for, 341
length preserving amputations, 342–343
postoperative management, 347
skin retraction prevention, 345
skin traction, 345–346
special considerations, 344–345
surgical technique, 343–344
AMS. See Acute mountain sickness
Anal lacerations, 291
Anemia, pediatric, 454
Anesthesia
 conclusion of general anesthesia, 95–96
difficult airway, 94
field anesthesia equipment, 97–100
indications for a definitive airway, 89–90
induction agents, 92
induction of general anesthesia, 90
local, 97
maintenance of general anesthesia, 94–95
neuraxial, 97
rapid sequence intubation, 90–94
regional, 96–97
secondary airway compromise, 90
sedatives, 92
Angiography
 vascular injuries, 360
Anhidrotic heat exhaustion, 412–413
Anthrax, 436, 440
Antibiotics
 coverage, 123
dosage for infection treatment, 129
treatment spectrum, 129
Anticoagulation
vascular injuries and, 374
Antidote Treatment Nerve Agent Autoinjectors, 445
Antimicrobial agents
burn care, 385
duration of use, 119–122
selection of, 119–122
Antipersonnel landmines, 8–9
Antitank landmines, 13–14
Anxiolytics, 92
Aorta injuries, 367–368
Arch bars, 187
ARDS. See Acute respiratory distress syndrome
Area support medical company, 19
ARG. See Amphibious Ready Group
Arm
compartment syndrome, 490
vascular injuries, 361–362
Armored vehicle crew casualties, 11–14
Army
augmentation teams, 25–26
basic primary care, 19–20
Combat Support Hospitals, 24–25
medical evacuation precedences, 52
point of injury care, 18
ASFs. See Aeromedical Staging Facilities
Aspiration pneumonitis, 152–153
Assist-control positive-pressure ventilation, 141
Ataxia, 424
Atelectotrauma, 142
ATLS. See Advanced Trauma Life Support
ATN. See Acute tubular necrosis
ATNAAs. See Antidote Treatment Nerve
Agent Autoinjectors Augmentation teams, 25–26
Auricular injury, 193
Axillary artery injuries, 361–362
B
Bacillus anthracis, 440
Backward Upward Rightward Pressure maneuver, 64–65
Bacteremia
 blood transfusions and, 485
Bacterial agents, 440
Bacterial keratitis, 209–210
Ballistic injuries, 6
Bandages, 70, 72–73
Barometric pressure aeromedical evacuation and, 49
Barotrauma, 142
Battalion aid stations, 18
Battlefield transfusions. See Transfusions
Battlefield trauma system model, 497–499
Biliary tract injuries, 270
Biological agents, 439
Biological contamination. See also Nuclear, biological, and chemical casualties
 aeromedical evacuation and, 51
 bacterial agents, 440
 biological agents, 439
 decontamination, 436–437
 detection of biological warfare agents, 435
 diagnosis of, 436
 hemorrhagic fevers, 438–439
infection control, 437
medical evacuation, 437–438
prevention of, 436
protection from, 436
symptoms of, 439–441
treatment of, 439–441
triage considerations, 32
viral agents, 441

Biological Identification Detection System, 435

Biotrauma, 142

Bladder

dysfunction associated with spinal injuries, 315
injuries of, 285–286

Blast injuries, 6, 8, 430
Blast mines, 13
Blast waves, 5

Bleeding. See Hemorrhage

Blindness, flash, 431

Blood, fresh whole

ABO matching, 470–471
emergency collection in the field, 478–483, 503–512
onsite specimen processing, 511
posttransfusion verification, 510–511
rapid testing of, 509
releasing, 509–510
role of care, 469
specimen processing, 511

Blood agents, 447

Blood donors

appropriate criteria, 512
bag issue, 505
frequency of donations, 512
identification of, 480–481
medication use, 512
performing phlebotomy, 505–508
postdonor care, 508–509
screening of, 481, 504–505

Blood products
 ABO matching, 470–471
 Rh matching, 471–472
 role of care, 468–469
 types of, 468–469

Blood Support Detachment, 511

Blood transfusions. See Transfusions

Blood volume, pediatric, 454

Blowout fractures, 213–214

Blunt injuries
 cardiac, 155
 pelvic, 318–319
 renal, 278

Bone fractures
 amputation considerations, 344
 bivalving casts, 330
 burns and, 388
 external fixation, 330–340
 extremities, 327–340
 facial, 186–190
 hands, 352
 LeFort fracture classification, 189–190
 mandible, 186–187
 maxillofacial, 188–190
 nasal, 187–188
orbital floor, 213–214
pelvic, 292
skull, 222–223
temporary external fixation, 327
transportation casts, 327
Botulinum toxins, 439
Bounding landmines, 8–9
Brachial artery injuries, 362
Brain injuries
 antimicrobial agent selection and duration, 120
Brain injury, traumatic. See Traumatic brain injury
Breathing, unassisted definition of, 145–146
Breathing support. See also Airway management
 burn care, 379
Brigade support medical company, 19
Bronchitis, high-altitude, 419
Brucella, 440
Brucellosis, 440
Burkholderia mallei, 440
Burn Center, 391
Burn Resuscitation Flowsheet, 384
Burns. See also Chemical contamination abdominal compartment syndrome and, 388
 airway interventions, 379
 albumin volume, 383–384
 antimicrobials, 121, 385
 breathing interventions, 379–380
Burn Resuscitation Flowsheet, 384
cellulitis, 386
cellular, 389
circulation management, 380
Clinical Practice Guidelines, 392
complications, 388
corneal abrasions, 386
ears, 386
edema and, 387
electrical injuries, 388–389
electrolyte disturbances, 384
escharotom, 387
extremity care, 387–388
fasciotomy, 388
fluid resuscitation, 380–382
fractures and, 388
glycosuria, 383
hyperkalemia and, 389
hypothermia, 378
infection control, 386
inhalation injury, 378, 388
local national burn patients, 390–391
metabolic considerations, 388
patient evaluation, 391
patient monitoring, 382
pediatric, 381–382, 453
point-of-injury care, 377–378
primary survey, 378–380
radiological injuries, 430–431
respiratory care, 388
resuscitation, 383–384
Rule of Nines, 381
Rule of Tens, 380, 391
secondary survey, 382–383
silver nylon dressings, 385
surgical debridement, 389
total body surface area, 380–382, 390
triage considerations, 390
urine output target, 383
US Army Institute of Surgical Research Burn Center, 391
white phosphorus, 389–390
wound care, 384–386

BURP. See Backward Upward Rightward Pressure maneuver

BZ, 447–448

C

Cabin altitude restriction
 aeromedical evacuation and, 50
Calcium, 139–140
Calf. See Lower extremities
Caloric requirements
 pediatric, 452
Cantholysis, 212–213
CAR. See Cabin altitude restriction
Carbapenem-resistant *Acinetobacter*, 123
Cardiac disease
 acute coronary syndrome, 155–159
 cardiac tamponade, 154–155
 congestive heart failure, 159–161
Cardiac injuries. See Heart injuries
Cardiac stroke volume, pediatric, 453
Cardiac tamponade, 154–155, 243–244
Cardiogenic shock, 78, 132
Cardiopulmonary resuscitation hypothermia and, 402
Cardiopulmonary technicians, 56
Carotid artery injuries, 197, 369–370
Case fatality rate, 522
CASEVAC. See Casualty evacuation
Casts
 bivalving, 330
 transportation, 327
Casualty evacuation. See also Patient evacuation
description of, 47
Casualty Receiving and Treatment Ships, 22
Casualty recorders, 40
Caveat-Hextend, 80
CCATTs. See Critical Care Air Transport Teams
Cellulitis, 125, 386
Central nervous system wounds antimicrobial agent selection and duration, 120
Central venous pressure, 231
Cerebral edema, high-altitude, 423–425
Cerebral perfusion pressure, 230–231
Cerebrovascular accidents, 161–163
Cervical spine injuries
 considerations, 184
 instability, 309–310
 patient transport, 310
Cervical vascular injury, 369–371
Cesarean sections, emergency, 300–302
CFR. See Case fatality rate
CG. See Phosgene
Chemical contamination. See also Nuclear, biological, and chemical casualties
 aeromedical evacuation and, 51
 burn injuries, 389
 corneal injuries, 207–208
 cyanogens, 447
 hypochlorite solution use, 449
 incapacitation agents, 447–448
 initial treatment priorities, 444
lung-damaging agents, 446–447
nerve agents, 444–445
off-gassing, 448
personal protection, 443–444
post-surgery procedures, 449–450
pretreatment of, 445
Reactive Skin Decontamination Lotion use, 446, 449
surgical treatment, 448–450
symptoms of, 445–448
thickened agents, 448
treatment of, 445–448
triage, 446–447
triage considerations, 32
vesicants, 445–446
wound decontamination, 448
wound exploration and debridement, 449

Chest injuries. See Thoracic injuries
Chest tubes, 244–246
Chest well compliance, 141
Chilblains, 393
Childbirth, emergency
 emergency cesarean section, 300–302
 neonatal resuscitation, 304–305
 precipitous vaginal delivery, 298
 uterine atony, 302–303

Children. See Pediatric trauma
Chlorine, 446–447
Chloropicrin, 446–447
Choking agents, 446–447
Cholera, 440
Cisatracurium, 92
Civilian internees. See Internees
CK. See Cyanogen chloride
Clamping vessels, 71
Clinical Practice Guidelines
 burns, 392
 compliance with, 498
Clostridial myonecrosis, 125
Coagulopathy
 blood transfusions and, 476–478
 dilutional, 476–478
 heatstroke and, 406, 409–410
 trauma-induced, 476–478
COCOM. See Combatant Command
Cold injuries
 cardiopulmonary resuscitation, 402–403
 chilblains, 393
 field treatment, 397, 400–401
 frostbite, 396–397
 frostnip, 396
 hypothermia, 399–402
 medical facility treatment, 397–399, 401–402
 nonfreezing, 393–397
 pernio, 394
 rapid rewarming, 398–399
 trench foot, 394–395
Colon injuries, 271–272
Combat-associated healthcare pneumonia, 153–154, 172–173
Combat lifesavers, 18
Combat stress
 triage considerations, 33–34
Combat Support Hospitals
role of medical care, 19, 24–25

Combatant Command, 497–498

Common femoral artery injuries, 363–364

Compartment syndrome
 description of, 110–111, 489
 early clinical diagnosis of, 111, 489
 fasciotomy technique, 111–112, 490–494
 fasciotomy wound management, 494–496
 late clinical diagnosis of, 111, 489
 lower extremities, 355–356, 491–496
 measurement of compartment pressures, 489
 mechanisms of injuries associated with, 111, 489
 prophylactic fasciotomy, 489–490
 treatment of, 111, 489
 upper extremities, 490–491

Compartment syndrome, abdominal burns and, 388

Compensated shock, 133

Computed tomographic angiography vascular injuries, 360

Computed tomography imaging abdominal injuries, 264
 head injuries, 226–227

Congestive heart failure, 156, 159–161

Conjunctival injuries
 foreign bodies, 210–211

Consciousness
 head injuries and, 224

Continental United States-based hospitals
 medical care roles, 28
 military trauma systems, 497

Contractors
 triage considerations, 33

Contrast dye-associated nephropathy, 168
Controlled hypotensive resuscitation, 74, 82–84
Controlled resuscitation, 74
CONUS-based hospitals. See Continental United States-based hospitals
Corneal injuries
 abrasions, 208–209, 386
 burns, 386
 chemical injuries of, 207–208
 foreign bodies, 210–211
Corneal ulcer, 209–210
Coronary syndrome, acute, 155–159
Coxiella burnetii, 440
CPP. See Cerebral perfusion pressure
CPR. See Cardiopulmonary resuscitation
Craniectomies, 233–238
Cricothyrotomy, 67–68
Critical care
 acalculous cholecystitis, 164
 acute coronary syndrome, 155–159
 acute respiratory distress syndrome, 143, 146–147
 acute tubular necrosis, 165–166, 168
 adrenal insufficiency, 172
 aspiration pneumonitis, 152–153
 blunt cardiac injury, 155
 cardiac disease, 154–161
 cardiac tamponade, 154–155
 cardiogenic shock, 132
 cerebrovascular accidents, 161–163
 combat-associated healthcare pneumonia, 153–154
 congestive heart failure, 159–161
 damage control surgery, 180–181
 diabetic ketoacidosis, 170–172
disseminated intravascular coagulation, 168–169
distributive shock, 132
diabetes mellitus, 170–172
fluid management, 133–134
gastrointestinal disease, 163–165
glucose control, 173
heparin-induced thrombocytopenia, 169–170
hyperglycemic hyperosmolar syndrome, 170–172
hyperkalemia, 137–138
hypernatremia, 135
hypocalcemia, 140
hypokalemia, 136–137
hypomagnesemia, 139
hypopotassemia, 135
hypovolemic shock, 131–132
iatrogenic complications of therapy, 168
ICU prophylaxis, 172–174
mechanical ventilation, 140–146
nephrolithiasis, 167–168
neurological disease, 161–163
nutrition, 173–174
prerenal azotemia, 165–166
pulmonary contusion, 147–148
pulmonary embolism, 148–152
pulmonary medicine, 140–154
renal disease, 165–168
rhabdomyolysis, 166–167
serum calcium levels and, 139–140
serum electrolyte management, 134
serum magnesium levels and, 138
serum potassium levels and, 136
shock, 131–133
stress gastritis, 163–164
strokes, 161–163
thrombotic thrombocytopenic purpura, 168–169
traumatic brain injury, 161
uncompensated shock, 131–133
ventilator-associated pneumonia, 172–173

Critical Care Air Transport Teams, 47, 55–58
Critical care nurses, 56
CRTS. See Casualty Receiving and Treatment Ships
Crush syndrome, 108–110
CT. See Computed tomography imaging
CTA. See Computed tomographic angiography
CVA. See Cerebrovascular accidents
CVP. See Central venous pressure
Cyanogen chloride, 447
Cyanogens, 447
Cyanosis, 418
Cyclohexyl sarin, 444
Cyclosarin, 444

D
Damage control surgery
 ACS monitoring, 180–181
 considerations, 175–176
 critical care, 180–181
 definition of, 175
 early resuscitation phase, 177
 general principles of, 177–182
 planned reoperation, 181–182
 prehospital phase, 177
 primary operation, 177–179
relaparotomy, 181–182
temporary abdominal closure, 178–179
thoracic injuries, 182
unplanned reexploration, 182
vacuum pack technique, 179

Debridement
 burn care, 389
 chemical contamination injuries, 449

Decontamination
 biological contamination, 436–437
 chemical injuries, 436–437, 448
 mechanical, 436
 physical, 437
 radiological injuries, 432

Decubitus ulcers, 315–316

Deep venous thrombosis
 diagnosis of, 148–149
 spinal injuries and, 315
 treatment of, 149

Delayed evacuation
 antimicrobial agent selection and duration, 121

Deliveries. See Childbirth, emergency

Department of Defense Trauma Registry
 function of, 521
 methods, 523–525
 minimum essential data, 523
 responsibilities, 498
 resuscitation records, 524–528
 situational awareness, 522–523
 technology, 523–525
 uses of, 523
Detainees. See Internees
Diabetic ketoacidosis, 170–172
Diagnostic peritoneal aspiration, 263–264
Diaphragm injuries, 255
Died of wounds, 522
Dilaudid, 91
Diphosgene, 446–447
Dirty bombs. See Radiological dispersal devices
Disseminated intravascular coagulation, 168–169
Distal femoral artery, 365
Distributive shock, 78, 132
DKA. See Diabetic ketoacidosis
DOW. See Died of wounds
DPA. See Diagnostic peritoneal aspiration
Drawover vaporizer, 97–100
Dressings, 70, 72–73
Duodenal injuries, 267–268
DVT. See Deep venous thrombosis

E
Ear injuries
 burns, 386
Ebola fever, 438–439
ECFV. See Extracellular fluid volume
Ectopic pregnancies, 293, 295
Edema
 burns and, 387
 high-altitude cerebral, 423–425
 high-altitude peripheral, 419
 high-altitude pulmonary, 421–423, 425
Electrical burn injuries, 388–389
Electrolyte management, 134, 384, 451
EMEDS. See Expeditionary Medical Support
Emergency cesarean sections, 300–302
Emergency childbirth. See Childbirth, emergency
Emergency whole blood collection, 478–483, 503–512
Empyema, 127
En route care
description of, 48
teams, 23
Encephalopathy
heatstroke and, 406, 408
Endocrine disease
adrenal insufficiency, 172
diabetic ketoacidosis, 170–172
hyperglycemic hyperosmolar syndrome, 170–172
Endotracheal intubation, 93
Endotracheal tubes, 66, 94
Enemy prisoners of war. See also Internees triage considerations, 33
Enteral nutrition, 173
Enucleation, 217
Environmental injuries
acclimatization, 404–405
acute mountain sickness, 416–418
altitude illness, 414–425
anhidrotic heat exhaustion, 412–413
cardiopulmonary resuscitation, 402–403
chilblains, 393
cold injuries, 393–403
field treatment, 397, 400–401
frostbite, 396–397
frostnip, 396
heat cramps, 410–411
heat edema, 413–414
heat exhaustion, 411–412
heat-induced syncope, 413
heat injury, 403–414
heatstroke, 405–410
heat tetany, 414
high-altitude bronchitis, 419
high-altitude cerebral edema, 423–425
high-altitude peripheral edema, 419
high-altitude pharyngitis, 419
high-altitude pulmonary edema, 421–423, 425
high-altitude retinal hemorrhage, 419–420
hypothermia, 399–402
medical treatment facility, 397–399, 401–402
miliaria profunda, 412–413
miliaria rubra, 412
minor illnesses, 412–414
nonfreezing cold injuries, 393–397
pernio, 394
pruritus, 412–413
rapid rewarming, 398–399
subacute mountain sickness, 420–421
sunburn, 414
thromboembolic events, 420
trench foot, 394–395

EPWs. See Enemy prisoners of war

Escharotomy, 387
Eschmann stylet, 65–66
Esophageal fistulas, 200
Esophageal injuries
diagnosis of, 199–200
treatment of, 200, 254–255

Ethics. See Medical ethics

Etomidate, 92

ETT. See Endotracheal tubes

Evacuation. See Aeromedical evacuation; Patient evacuation

Expeditionary medical facilities, 26–27

Expeditionary Medical Support, 21–22, 26

Explosive ordnance disposal, 16

Explosive-related injuries

categories of, 5, 7
head injuries, 220–222

Extracellular fluid volume, 133, 136

Extraperitoneal injuries, 286

Extremity fractures

bivalving casts, 330
external fixation, 330–340
femur diaphyseal fracture technique, 331–334
patient evacuation, 339–340
skeletal traction, 338–339
technique to span ankle, 338
technique to span knee, 335–338
temporary external fixation, 327
tibia shaft fracture technique, 334–335
transportation casts, 327
wound management, 328–330

Extremity injuries

antimicrobial agent selection and duration, 119
fractures, 327–340
vascular, 361–367

Eye injuries. See Ocular injuries

Eyelid lacerations, 214–216
Facial injuries. See also Neck injuries
 airway management, 183–184
 auricular injury, 193
 bone fractures, 186–190
 cervical spine injuries, 184
 evaluation of, 185
 facial lacerations, 191
 facial nerve injury, 191–192
 immediate management of, 183–185
 parotid duct injury, 192–193
 soft-tissue injuries, 190–193
 vascular injuries, 184–185
Fallopian tube injuries, 293
Fasciotomy
 arm, 490
 burn care, 388
 calf, 492–494
 compartment syndrome treatment, 111
 foot, 494
 forearm, 490–491
 lower extremities, 491–494
 technique, 111–112, 490–496
 thigh, 491–492
 upper extremities, 490–491
 wound management, 494–496
FAST. See Focused abdominal sonography for trauma
Febrile nonhemolytic transfusion reaction, 486
Femoral artery injuries, 363–364
Fentanyl, 91
Fetal heart rate, 298, 300
Flail chest, 244
Flash blindness, 431
Flash burns, 430
Fleet Surgical Teams, 22
Fluid therapy
 burns and, 380–382
 critical care, 133–134
 pediatric, 451
 shock, 80, 83
Focused abdominal sonography for trauma, 259–263
Fogarty thrombectomy catheters, 372
Foot compartment syndrome, 355–356, 494
Foot injuries
 evaluation of, 353–354
 external fixation, 356
 hindfoot, 354
 initial management, 353–354
 midfoot, 354
 penetrating, 353
 stabilization, 356
 toes, 355
 types of, 349
Forearm compartment syndrome, 490–491
Foreign bodies
 ocular, 210–211
Forward Resuscitative Surgical System, 23
Forward Surgical Teams
 aeromedical evacuation from, 48–49
 function of, 19–20, 25
Fractures. See Bone fractures
Francisella tularensis, 440
Fresh frozen plasma
 ABO matching, 470–471
 role of care, 469
Fresh whole blood
 ABO matching, 470–471
 emergency collection in the field, 478–483, 503–512
 onsite specimen processing, 511
 posttransfusion verification, 510–511
 rapid testing of, 509
 releasing, 509–510
 role of care, 469
 specimen processing, 511
Frostbite, 396–397
Frostnip, 396
FST. See Forward Surgical Teams

G
Gardner-Wells tongs, 312–314
Gas gangrene, 125
Gastric injuries, 266
Gastritis, stress, 163–164
Gastrointestinal disease
 acalculous cholecystitis, 164
 pediatric care, 453–454
 spinal injuries and, 315
 stress gastritis, 163–164
GCS. See Glasgow Coma Scale
General anesthesia
 conclusion of, 95–96
 induction of, 90
 maintenance of, 94–95
Geneva Convention for the Amelioration of the Wounded and Sick in Armed Forces in the Field, 461–462
Geneva Convention Relative to the Treatment of Prisoners of War, 461–462
Geneva Conventions, 461–462
Genitalia injuries, 288–289
Genitourinary tract injuries
 bladder, 285–286
 external genitalia, 288–289
 renal, 277–282
 ureteral, 282–285
 urethral, 286–288
Glasgow Coma Scale, 219, 224, 228–229, 455, 519
Glasgow Outcomes Scale, 219
Glucose control, 173
Glycosuria, 383
GOS. See Glasgow Outcomes Scale
GPW. See Geneva Convention Relative to the Treatment of Prisoners of War
Graft material
 vascular injuries, 373
Greater saphenous vein cutdowns, 86–87
Gum Elastic Bougie, 65
GWS. See Geneva Convention for the Amelioration of the Wounded and Sick in Armed Forces in the Field
Gynecological emergencies. See also Childbirth, emergency
 acute vaginal hemorrhage, 297–298
Gynecological injuries. See also Childbirth, emergency
 abdominal hysterectomy, 294–296
 acute vaginal hemorrhage, 297–298
 adnexal, 293, 295
 cervical, 293
 ovarian, 295–296
 retroperitoneal hematoma, 296–297
 uterine, 293
 vaginal, 292–293
vulvar, 291–292

HACE. See High-altitude cerebral edema

Hand compartment syndrome, 350–351

Hand injuries
 dressing, 352–353
 evaluation of, 350
 hand compartment syndrome, 350–351
 initial management, 350
 splinting, 352–353
 surgical technique, 351–352
 tendons, 349
 tissue management, 352
 types of, 349

Hanta fever, 438–439

HAPE. See High-altitude pulmonary edema

Head injuries. See also Traumatic brain injury
 classification of, 222–223
 evacuation of head-injured patients, 238–239
 Glasgow Coma Scale, 219, 224
 intracranial pressure and, 219, 227–232
 mechanisms of injury, 223
 medical management, 227–233
 patient assessment, 224–227
 primary injuries, 223
 pupillary reactivity and, 225–226
 radiographic evaluation, 226–227
 secondary injuries, 223
 surgical management, 233–238
 triage, 224–227
 types of combat head injuries, 220–222
Health Insurance Portability and Accountability Act, 463

Health services. See Roles of medical care

Heart disease. See Cardiac disease

Heart injuries
 blunt, 155
 penetrating, 252–253
 treatment of, 252–253

Heart rate
 fetal, 298, 300
 infant, 304–305

HEAT. See High explosive antitank rounds

Heat-induced syncope, 413

Heat cramps, 410–411

Heat edema, 413–414

Heat exhaustion, 411–413

Heat injury
 acclimatization, 404–405
 anhidrotic heat exhaustion, 412–413
 heat cramps, 410–411
 heat edema, 413–414
 heat exhaustion, 411–412
 heat-induced syncope, 413
 heatstroke, 405–410
 heat tetany, 414
 miliaria profunda, 412–413
 miliaria rubra, 412
 minor illnesses, 412–414
 prevention of, 403–405
 pruritus, 412–413
 sunburn, 414

Heatstroke
clinical presentation, 406–407
complications of, 409–410
core temperature and, 407
evaluation of, 405
treatment of, 407–408
Heat tetany, 414
Hematology
 pediatric care, 454
Hematomas
 head injuries and, 236
 infrafascial, 292
 retroperitoneal, 296–297
 vaginal, 292
Hematuria, 277–278
Hemorrhage. See also Transfusions
 acute vaginal hemorrhage, 297–298
 clamping vessels, 71
 controlled hypotension, 74
 control of, 69
 dressings and bandages, 70, 72–73
 early control of, 467–468
 external, 69
 first responder treatment, 70–72
 hemostatic agents, 73–74
 high-altitude retinal hemorrhage, 419–420
 internal, 70, 72
 limb splints, 72
 orbital, 211–212
 pressure points, 71
 scalp bleeding, 72
 sites of, 69–70
tourniquets, 71
uterine atony, 302–303
Hemorrhagic fevers, 438–439, 441
Hemorrhagic shock, 81–82
Hemostatic agents, 73–74
Hemothorax, 243
Hemotympanum, 202
Heparin-induced thrombocytopenia, 169–170
Hepatic artery injuries, 368
Hetastarch, 80
Hextend, 80
HHS. See Hyperglycemic hyperosmolar syndrome
High-altitude bronchitis, 419
High-altitude cerebral edema, 423–425
High-altitude peripheral edema, 419
High-altitude pharyngitis, 419
High-altitude pulmonary edema, 421–423, 425
High-altitude retinal hemorrhage, 419–420
High explosive antitank rounds, 11–12
Hindfoot injuries, 354
HIPAA. See Health Insurance Portability and Accountability Act
HIT. See Heparin-induced thrombocytopenia
Horizontal spray mines, 9
Hospital augmentation teams, 25
Hospital ships, 27–28
HTS. See Hypertonic saline
Humanitarian transport requests, 58
Humidity
 aeromedical evacuation and, 51
Hydrogen cyanide, 447
Hyperglycemic hyperosmolar syndrome, 170–172
Hyperkalemia
 acute, 137
 blood transfusions and, 475–476
 burns and, 389
 chronic, 137
 heatstroke and, 409
 pseudohyperkalemia, 137
 treatment of, 137–138

Hypermetabolism
 burns and, 388

Hypernatremia, 135
Hypertonic saline, 80, 134
Hyphema, 211
Hypocalcemia, 140, 409
 blood transfusions and, 475–476
Hypochlorite solution, 449
Hypokalemia, 136–137
Hypomagnesemia, 139
Hyponatremia, 135
Hypopharyngeal injuries, 199–200

Hypotension
 cerebrovascular accidents, 162–163
 heatstroke and, 407
 permissive, 74, 82–84
 shock and, 78

Hypothermia
 blood transfusions and, 473, 476
 burn care, 378
 cardiopulmonary resuscitation, 402–403
 causative factors, 399
 field treatment, 400–401
medical facility treatment, 401–402
mild, 400, 402
moderate, 400
prevention of, 399
profound, 400
severe, 400, 403
shock and, 84

Hypovolemic shock, 77–82, 131–132
Hysterectomy, abdominal, 294–296

I

ICFV. See Intracellular fluid volume
ICP. See Intracranial pressure

Ileus
spinal injuries and, 315

Iliac artery injuries, 369

Immune system, pediatric, 454–455

Impact Uni-Vent Eagle Model 754 portable ventilator, 99–100

Improvised explosive devices, 6, 9

Incapacitation agents, 447–448

Indoles, 447–448

Infant heart rate, 304–305

Infants. See Pediatric trauma

Infections
antibiotic coverage, 123
antimicrobial agent selection and duration, 119–122
battlefield environment and, 113
burn care, 386
diagnosis of, 113
intraabdominal, 126
microorganisms causing, 114
patterns of, 114–115
prevention of, 116–118
pulmonary, 126–127
soft-tissue infections, 125–126
spectrum and dosage of antibiotic agents, 129
systemic sepsis, 127–128, 130
tetanus, 124–125
treatment of, 115–124
Inferior vena cava filters, 373
Infrafascial hematoma, 292
Inhalation injuries, 14, 378, 388
Initial airway management, 61–62
Initial triage officers, 38
Intensivist physicians, 56
Internal bleeding, 70, 72
Internal carotid artery injuries, 197
Internal jugular vein injuries, 197
Internal jugular venipuncture, 85–86
Internees
 advocates for, 465–466
care of, 461–466
Geneva Conventions, 461–462
legal issues, 465
medical care of, 462–464
medical ethics principles, 515–517
medical information, 464
medical records, 463
medical staffing, 465
planning for, 464
screening, 464–265
security, 466
setup up for, 464
supplies, 465

tria ge considerations, 33

workload, 462

Intraabdominal infections, 126

Intracellular fluid volume, 136

Intracranial pressure

head injuries and, 219, 227–232

monitoring, 229–230

Intraocular injuries, 197

Intraosseous infusion, 87–88

Intravascular resuscitation fluids, 83

Intravascular volume, 131, 134, 168

IO. See Intraosseous infusion

IVV. See Intravascular volume

J

Joint Theater Trauma System

Burn Resuscitation Flowsheet, 384

“Damage Control Resuscitation,” 80
development of, 1
goals of, 499–500

purpose of, 497–499

triage, 29

Joint Trauma System, 500–502, 521

JTS. See Joint Trauma System

JTTS. See Joint Theater Trauma System

Jugular vein injuries, 197, 370–371

Jugular venipuncture, 85–86

K

Ketamine, 92

Kidney disease. See Renal disease

Kidney injuries. See Renal injuries
Kinetic energy rounds, 12–13

L

Lacerations
 anal, 291
 cervix, 293
 facial, 191
 vaginal, 292
 vulvar, 291

Lactated Ringer’s solution, 80, 133, 380

Laparotomy, abdominal, 258, 265

Large vein injuries, 371

Laryngeal injuries, 198

Laryngeal mask airway, 68

Laryngoscopy, 64

Laryngotracheal injuries, 198

Laser eye injuries, 216–217

Lassa fever, 438–439

Lateral canthotomy, 212–213

LD. See Lethal dose of radiation

LeFort fracture classification, 189–190

Leg. See Lower extremities

Lethal dose of radiation, 429

Lewisite, 445

Limb splints, 72

Liver injuries, 269–270

LMA. See Laryngeal mask airway

Local anesthesia, 97

Local national patients
 burns, 390–391

Lower extremities
 compartment syndrome, 491–494
vascular injuries, 362–367
Lumbar spine injuries, 310–312
Lung-damaging agents, 446–447
Lung injuries, 252–253

M
M-16A1 rifles, 10–11
MAC. See Minimal alveolar concentration
Machine guns. See Small arms injuries
Macintosh laryngoscopy blade, 64
Magnesium, 138
Mandible fractures, 186–187
Marine Corps
 basic primary care, 23
 medical evacuation precedences, 52
 point of injury care, 18
Marine Expeditionary Forces, 23
Mask ventilation, 62–63
Mass casualty events. See also Triage
 response to, 29
Maxillary-mandibular fixation, 186–187
Maxillofacial fractures, 188–190
Maxillofacial injuries
 antimicrobial agent selection and duration, 119
Mechanical ventilation
 basics of, 140
 compliance of chest wall, 141
 initial settings, 142
 positive pressure ventilation, 141
 pressure control modes, 141
 protocol, 144–146
 setup and adjustment, 144–145
unassisted breathing definition, 145–146
ventilator-associated pneumonia, 153–154, 172–173
volume control modes, 141
volume cycled, 142–143
weaning, 145
MEDEVAC. See Medical evacuation
Median sternotomies, 248–249
Medical care roles. See Roles of medical care
Medical companies, 19
Medical detachments, 25
Medical ethics
 principles of, 515–517
Medical evacuation. See also Patient evacuation
 precedences, 51–52
Medical treatment facilities
 aeromedical evacuation from, 48–49
 case fatality rates, 522
 triage considerations, 35
Mesenteric artery injuries, 369
Methylphosphonothioic acid, 444
MFSTs. See Mobile Field Surgical Teams
Microvascular bleeding
 blood transfusions and, 476–478
Midazolam, 92
Midfoot injuries, 354
Miliaria profunda, 412–413
Miliaria rubra, 412
Military trauma systems, 497
Miller laryngoscopy blade, 64–65
Minimal alveolar concentration, 95
Mission-Oriented Protective Posture gear, 404, 443, 448
Mobile Field Surgical Teams, 21
MOPP. See Mission-Oriented Protective Posture gear
Morphine, 91
Mountain sickness
 acute, 416–418
 subacute, 420–421
MRSA pneumonia
 antibiotic coverage, 123, 153–154
MTFs. See Medical treatment facilities
Muscle relaxants, 91
Mycotoxins, 439
Myocardial infarction
 non-ST elevation, 157–159
 ST elevation, 155–157
N
Narcotics, 91
Nasal fractures, 187–188
NATO. See North Atlantic Treaty Organization
Navy
 basic primary care, 22
 expeditionary medical facilities, 26–27
 hospital ships, 27–28
 medical evacuation precedences, 52
Navy Expeditionary Health Service Support, 27
NBC. See Nuclear, biological, and chemical casualties
Neck injuries. See also Facial injuries antimicrobial agent selection and duration, 119
 esophageal fistulas, 200
 esophageal injuries, 199–200
 hypopharyngeal injuries, 199–200
 immediate management, 194
 internal carotid artery injuries, 197
internal jugular vein injuries, 197
intraocular injuries, 197
laryngeal injuries, 198
laryngotracheal injuries, 198
neck anatomy, 193–194
operative strategy, 194–196
otological injuries, 200–203
penetrating wounds, 193–196
skull base injuries, 200–203
surgical principles, 196–200
temporal bone injuries, 200–203
tracheal injuries, 199
vertebral artery injuries, 196
Necrotizing infections, 125–126
Negative pressure wound therapy, 106
Neonatal resuscitation, 304–305
Nephrectomies, 280–282
Nephrolithiasis, 167–168
Nerve agents, 444–445, 448
Nerve injuries
 facial, 191–192
 hand, 352
Neuraxial anesthesia, 97
Neurogenic shock
 diagnosis of, 78
 spinal injuries and, 315
 treatment of, 80
Neurological disease
 cerebrovascular accidents, 161–163
 strokes, 161–163
 traumatic brain injury, 161
Neurosurgical patients
 aeromedical evacuation and, 50
Nitrogen mustard, 445
Noise
 aeromedical evacuation and, 50
Non-ST elevation myocardial infarction, 157–159
Noncombatant locals
 triage considerations, 32–33
Normal saline, 133–134
North Atlantic Treaty Organization
 roles of medical care, 20
 7.62 rifle cartridge, 11
NPWT. See Negative pressure wound therapy
NSTEMI. See Non-ST elevation myocardial infarction
Nuclear, biological, and chemical casualties. See also Biological contamination; Chemical contamination
 aeromedical evacuation and, 51
 blast injuries, 430
 casualty yield by type of weapon, 427–428
 conventional nuclear weapons, 427–428
 decontamination, 432
 flash blindness, 431
 flash burns, 430
 lethal dose of radiation, 429
 logistics of casualty management, 432–433
 medical aspects of, 429
 potential injuries, 430–431
 radiation injuries, 430–431
 radiological dispersal devices, 428
 retinal burns, 431
 thermal burns, 430
 treatment of, 430
treatment of combined injuries, 431–432
triage, 428–429

Nutrition

critical care, 173–174
pediatric requirements, 451–452

O

Obstetrical emergencies. See also Childbirth, emergency

acute vaginal hemorrhage, 297–298

Obstructive shock, 132

Ocular injuries

anterior segment injuries, 207–214
antimicrobial agent selection and duration, 120
bacterial keratitis, 209–210
cantholysis, 212–213
chemical injuries of the cornea, 207–208
corneal abrasions, 208–209
corneal ulcer, 209–210
enucleation, 217
flash blindness, 431
foreign bodies, 210–211
hyphema, 211
identifying severe injuries, 205–206
laser eye injuries, 216–217
lateral canthotomy, 212–213
lid lacerations, 214–216
open globe injuries, 206–207
orbital floor fractures, 213–214
retrobulbar hemorrhage, 211–212
subconjunctival hemorrhage, 207
triage of, 205

Off-gassing, 448
Ohmeda Universal Portable Anesthesia Complete, 97–100
Open globe injuries, 206–207
Open joint injuries, 101–112
Open pneumothorax, 244
Operation Enduring Freedom/Operation Iraqi Freedom
casualties by weapon type, 2
cause of injuries, 3
Orbital floor fractures, 213–214
Orbital hemorrhage, 211–212
Orotracheal intubation, 63–66
Ostomy patients
 aeromedical evacuation and, 50
Otological injuries, 200–203
Ovarian cysts, 296
Ovarian injuries, 295–296
Oxygenation, 141, 144
P
Pancreatic injuries, 268–269
Pancreatoduodenectomy, 268–269
Pancuronium, 91
Parenteral nutrition, 174
Parotid duct injuries, 192–193
Partial pressure of oxygen
 aeromedical evacuation and, 50
Patient evacuation
 aeromedical evacuation system, 47–59
 biological contamination and, 437–438
 CASEVAC, 47
 extremity fractures and, 339–340
 head injuries, 238–239
 MEDEVAC, 51–52
spinal injuries, 310–312

Patient Movement Request Center, 59

Patient Movement Requirements Center, 49, 53

Patient transportation. See Patient evacuation

Pediatric trauma

 anatomic considerations, 451–452
 blood volume, 454
 body surface area, 453
 burns, 381–382, 453
 caloric requirements, 452
 cardiovascular system, 452–453
 commonly used drugs and dosages, 458
 diagnosis of, 455
 electrolytes, 451
 evaluation of, 455
 fluid requirements, 451
 gastrointestinal system, 453–454
 hematology, 454
 immune system, 454–455
 nutrition, 451–452
 physiological considerations, 451–452
 protein requirements, 452
 pulmonary system, 452
 rapid sequence intubation, 455–456
 renal system, 454
 resuscitation equipment and supplies, 456–457
 surgical management, 458
 thermoregulation, 454
 treatment of, 455–456
 vascular injuries, 373
 vital signs, 453
PEEP. *See Positive end-expiratory pressure*

Pelvic injuries
- blunt, 318–319
- C-clamp placement, 324–325
- diagnosis of, 317–318
- external fixation, 322–323
- fractures, 292
- penetrating, 321–325
- retroperitoneal packing, 323–324
- treatment of, 319–325

Penetrating injuries
- abdominal, 257
- antimicrobial agent selection and duration, 120
- feet, 353
- head, 220–221
- neck, 193–196
- pelvic, 321–325
- renal, 278
- spinal, 314

Penile injuries, 288

Peripheral edema, high-altitude, 419

Permanent cavity injuries, 3–4, 10–11

Permissive hypotension, 74, 82–84

Pernio, 394

Pharyngitis, high-altitude, 419

Phlebotomy, 505–508

Phosgene, 446–447

Phosgene oxime, 445

Pistols. *See Small arms injuries*

Plague, 436, 437, 440

Plasma
ABO matching, 470–471
role of care, 468–469
PMs. See Program Managers
PMRC. See Patient Movement Requirements Center
Pneumonia
 combat-associated healthcare pneumonia, 153–154, 172–173
diagnosis and treatment, 127
 MRSA and, 123, 153–154
 ventilator-associated pneumonia, 153–154, 172–173
Pneumonitis, aspiration, 152–153
Pneumothorax
 aeromedical evacuation and, 50
 open, 244
 positive pressure ventilation and, 63
Pneumothorax, tension
 diagnosis of, 241
 positive pressure ventilation and, 63
 treatment of, 243
Point of injury care, 18, 121
Polymicrobial infections, 125
Popliteal artery injuries, 364–366
Portable ventilators, 99–100
Portal vein injuries, 368
Positive end-expiratory pressure, 141–143
Positive pressure ventilation, 63, 141
Postoperative wound infections, 125
Potassium, 136
Precipitous vaginal delivery, 298
Pregnancy. See also Childbirth, emergency
 acute vaginal hemorrhage, 297–298
 ectopic, 293, 295
Prerenal azotemia, 165–166
Primary blast injuries
description of, 5, 7
head injuries, 220–222
Prisoners of war. See Enemy prisoners of war
Profunda femoris artery injuries, 363–364
Program Managers, 498
Projectile injuries, 3–4
Propofol, 92
Prosthetics
vascular injury treatment, 373
Protein requirements, pediatric, 452
Pruritus, 412–413
Pseudohyperkalemia, 137
Psoas hitch, 282–283
Pulmonary contusion, 147–148
Pulmonary edema, high-altitude, 421–423, 425
Pulmonary embolism
deep venous thrombosis and, 148–149
diagnosis of, 149–150
hemodynamically significant, 151–152
prevention of venous thromboembolism, 152
Pulmonary infections, 126–127
Pulmonary medicine
acute respiratory distress syndrome, 143, 146–147
aspiration pneumonitis, 152–153
combat-associated healthcare pneumonia, 153–154
mechanical ventilation basics, 140–143
pediatric, 452
pulmonary contusion, 147–148
pulmonary embolism, 148–152
Pupillary reactivity
 head injuries and, 225–226

Q
Q fever, 440
Quaternary blast injuries, 5, 7

R
Radial artery injuries, 362
Radiation injuries, 430–431
Radiological dispersal devices, 427–428
Radiological injuries. See also Nuclear, biological, and chemical casualties
 blast injuries, 430
 casualty yield by type of weapon, 427–428
 conventional nuclear weapons, 427–428
 decontamination, 432
 flash blindness, 431
 flash burns, 430
 lethal dose of radiation, 429
 logistics of casualty management, 432–433
 medical aspects of, 429
 potential injuries, 430–431
 radiation injuries, 430–431
 radiological dispersal devices, 428
 retinal burns, 431
 thermal burns, 430
 treatment of, 430
 treatment of combined injuries, 431–432
 triage, 428–429
Rapid sequence intubation, 63, 90–94
RDDs. See Radiological dispersal devices
Reactive Skin Decontamination Lotion, 446, 449
Recombinant factor VIIa, 477
Rectal injuries, 272–273
Red blood cells
 ABO matching, 470–471
 role of care, 468–469
Reflux, 453
Regional anesthesia, 96–97
Relaparotomies, 181–182
Renal arteries injuries, 369
Renal disease
 acute tubular necrosis, 165–166, 168
 heatstroke and renal failure, 406
 hemorrhagic fever with renal syndrome, 438–439
 iatrogenic complications of therapy, 168
 nephrolithiasis, 167–168
 prerenal azotemia, 165–166
 rhabdomyolysis, 166–167
Renal injuries
 blunt trauma, 278
 grading, 278
 hematuria, 277–278
 major, 279
 minor, 278
 nephrectomies, 280–282
 operative technique, 279–282
 penetrating, 278
Renal system, pediatric, 454
Respiration, 141
Respiratory rate, 141
Resuscitation
 burn injuries, 383–384
 endpoints, 84
intravascular resuscitation fluids, 83
neonatal, 304–305
shock, 79–84, 131–132
Resuscitation records, 524–528
Resuscitation stations, 43
Resuscitative thoracotomies, 246–247
Retained personnel. See Internees
Retinal burns, 431
Retinal hemorrhage, high-altitude, 419–420
Retrobulbar hemorrhage, 211–212
Retrograde urethrography, 286–287
Retroperitoneal hematoma, 296–297
Retroperitoneal injuries, 273–274
Returned to duty, 522
rFVIIa. See Recombinant factor VIIa
Rh blood matching, 471–472
Rhabdomyolysis
 crush injury and, 166–167
diagnosis of, 166
 heatstroke and, 406, 409
treatment of, 166–167
Ricin, 439
Rifles. See Small arms injuries
Rift Valley fever, 438–439
Ringer’s solution, lactated, 80, 133, 380
Rocuronium, 91
Roles of medical care
 basic primary care, 19–23
 CONUS-based hospitals, 28
 function of, 17
 medical treatment facility care, 23–28
point of injury care, 18
RSDL. See Reactive Skin Decontamination Lotion
RTD. See Returned to duty
Rule of Nines, 381
Rule of Tens, 380, 391
S
Saphenous vein cutdowns, 86–87
Sarin, 444
Scalp bleeding, 72
Scalp injuries, 222
Scopolamine, 93
Scrotal injuries, 288
SEB. See Staphylococcal enterotoxin B
Secondary blast injuries, 5, 7
Sedatives, 92
Seizures
 heatstroke and, 407
Sepsis
 antibiotic coverage, 123
 blood transfusions and, 485
 systemic sepsis, 127–128, 130
Septic shock, 78, 81
Serum calcium, 139–140
Serum electrolyte management, 134
Serum magnesium, 138
Serum potassium, 136
Shaped charges, 11–12
Shock
 cardiogenic, 78, 132
 classification of, 77–78
 compensated shock, 133
controlled hypotensive resuscitation, 82–84
critical care, 131–133
distributive, 78, 132
greater saphenous vein cutdowns, 86–87
hemorrhagic, 81–82
hypotension and, 78
hypothermia and, 84
hypovolemic, 77–82, 131–132
internal jugular venipuncture, 85–86
intraosseous infusion, 87–88
intravascular resuscitation fluids, 83
neurogenic, 78, 80, 315
obstructive, 132
septic, 78, 81
subclavian vein access, 85–86
treatment of, 79–82
uncompensated shock, 131–133
vascular access, 84–87
Shock trauma platoons, 18
SIMV. See Synchronized intermittent mandatory ventilation
Skeletal traction, 338–339
Skull base injuries, 200–203
Skull flaps, 235–237
Skull fractures, 222–223
Small arms injuries, 9–11
Small bowel injuries, 271
Small Portable Expeditionary Aeromedical Rapid Response team, 21
Smallpox, 436, 437–438, 441
Sniper rifles, 11
Soft-tissue infections, 125–126
Soft-tissue injuries
compartment syndrome, 110–111
crush syndrome, 108–110
facial, 190–193
fasciotomy technique, 111–112
presurgical care, 101
surgical wound management priorities, 101–102
wound care, 102–107
wound management after initial surgery, 107

Soman, 444

Sonography
 focused abdominal sonography for trauma, 259–263

SPEARR. See Small Portable Expeditionary Aeromedical Rapid Response team

Spermatic cord injuries, 288

Spinal column support, 309

Spinal injuries
 anatomical considerations, 311–312
 antimicrobial agent selection and duration, 120
 bladder dysfunction and, 315
 classification of, 307–308
 decubitus ulcers and, 315–316
 deep vein thrombosis and, 315
 emergent surgery, 314
 Gardner-Wells tongs, 312–314
 gastrointestinal tract and, 315
 halo use, 311
 instability, 309–310
 mechanical integrity of the vertebral column, 308–310
 neurogenic shock, 315
 pathophysiology of, 308
 penetrating, 314
 transport considerations, 310–312
Splenic injuries, 271
ST elevation myocardial infarction, 155–157
Staphylococcal enteroxin B, 439
Static landmines, 8
STEMI. See ST elevation myocardial infarction
Sternotomies, 248–249
Stomach injuries, 266
Stress gastritis, 163–164
Stress ulcers
 spinal injuries and, 315
Strokes, 161–163
Subclavian artery injuries, 361
Subclavian vein access, 85–86
Subconjunctival hemorrhage, 207
Subxiphoid pericardial window, 248
Succinylcholine, 91
Sulfur mustard, 445
Sunburn, 414
Superficial femoral artery injuries, 364
Supraclavicular thoracotomies, 249–250
Surgery. See Damage control surgery; specific injury type
Surgery debridement
 burn care, 389
Surgical companies, 23
Surgical cricothyrotomy, 67–68
Synchronized intermittent mandatory ventilation, 141–142
Syncope, heat-induced, 413
Systemic sepsis, 127–128, 130
T
T-2 mycotoxins, 439
Tabun, 444
Tactical combat casualty care, 17
TBI. See Traumatic brain injury
TBSA. See Total body surface area
TCCC. See Tactical combat casualty care
Temporal bone injuries, 200–203
Temporary cavity injuries, 3–4, 10–11
Tendon injuries, 349, 352
Tension pneumothorax
 diagnosis of, 241
 positive pressure ventilation and, 63
 treatment of, 243
Tertiary blast injuries, 5, 7
Testicular injuries, 289
Tetanus, 124–125
Theater Medical Directors, 498
Theater of Operations, 497
Thermal burns, 430
Thermal injuries, 8
Thermal stress
 aeromedical evacuation and, 50
Thermobaric injuries, 8
Thermoregulation, pediatric, 454
Thickened agents, 448
Thigh compartment syndrome, 491–492
Third country nationals
 triage considerations, 32–33
Thoracic injuries
 anatomical considerations, 241–242
 antimicrobial agent selection and duration, 119
 cardiac tamponade, 243–244
 damage control surgery, 182
diagnosis of, 242
evaluation of, 242
flail chest, 244
massive hemothorax, 243
open pneumothorax, 244
surgical management, 244–255
tension pneumothorax, 241, 243
thoracotomies, 244–255
vascular, 251–252
Thoracic spine injuries, 310–312
Thoracoabdominal thoracotomies, 250–251
Thoracotomies
 damage control surgery, 182
 median sternotomy, 248–249
 resuscitative, 246–247
 subxiphoid pericardial window, 248
 supraclavicular, 249–250
 thoracoabdominal, 250–251
 trap door, 249–250
 tube thoracotomies, 244–246
Thromboembolic events
 altitude-related, 420
Thrombotic thrombocytopenic purpura, 168–169
Tibial artery injuries, 366
Tidal volume, 141
TMD. See Theater Medical Directors
TNCs. See Trauma Nurse Coordinators
Toe injuries, 355
Torso vascular injuries, 367–369
Total body surface area, 380–382, 390
Tourniquets, 71, 467
TOWs. See Tube-launched, optically tracked, wire-guided missiles
Tracheal injuries, 199
Tracheobronchial tree injuries, 254
Traction, skeletal, 338–339
Tractotomies, 253
TRALI. See Transfusion-related acute lung injury
Transfusion-related acute lung injury, 486–487
Transfusions
 ABO matching of blood products, 470–471, 480
 acidosis, 474–476
 acute hemolytic transfusion reaction, 484–485
 allergic transfusion reactions, 487–488
 blood products available by role, 468–469
 coagulopathy, 476–478
 contaminated blood products, 485
 early control of hemorrhage, 467–468
 emergency collection of fresh whole blood in the field, 478–483, 503–512
 febrile nonhemolytic transfusion reaction, 486
 hyperkalemia, 475–476
 hypocalcemia, 475–476
 hypothermia, 473, 476
 management of complications, 473–478
 massive, 472–478
 microvascular bleeding, 476–478
 posttransfusion verification, 510–511
 protocol, 474
 reactions in the field, 483–488
 Rh blood matching for female casualties, 471–472
 sepsis, 485
 transfusion-related acute lung injury, 486–487
 treatment plan for transfusion reaction, 483
urticarial transfusion reactions, 487

Trap door thoracotomies, 249–250

Trauma Medical Directors, 498

Trauma Nurse Coordinators, 498

Trauma Registry, DoD
 function of, 521
 methods, 523–525
 minimum essential data, 523
 responsibilities, 498
 resuscitation records, 524–528
 situational awareness, 522–523
 technology, 523–525
 uses of, 523

Trauma systems. See also Joint Theater Trauma System
 battlefield trauma system model, 497–499
 description of, 497
 Joint Trauma System, 500–502
 military trauma systems, 497

Traumatic brain injury, 161. See also Head injuries

Trench foot, 394–395

Triage
 anatomical location of injuries and, 40
 BICEPS mnemonic, 33–34
 burns, 390
 categories, 30–31
 chemical contamination injuries, 446–447
 decision-making, 37–38
 delayed category, 30–31
 emergent treatment area, 41–44
 expectant area, 44
 expectant category, 31
external factors, 34–35
head injuries, 224–227
immediate category, 30
initial triage area, 38, 40–41
internal factors, 35–36
management, 31–32
mechanism of injuries and, 39
minimal category, 31
nonemergent treatment area, 44
ocular injuries, 205
operation tips, 44–45
principle of, 29
radiological injuries, 428–429
resource constraints, 34–37
resuscitation stations, 43
special considerations, 32–34
staffing, 41, 43–44
types of injuries and, 38

TTP. See Thrombotic thrombocytopenic purpura
Tube-launched, optically tracked, wire-guided missiles, 12
Tube thoracotomies, 244–246
Tularemia, 440
Two-person mask ventilation, 62–63

U
Ulcers
corneal, 209–210
decubitus, 315–316
stress, 315
Ulnar artery injuries, 362
Ultrasonography
focused abdominal sonography for trauma, 259–263
Unassisted breathing, definition of, 145–146
Uncompensated shock, 131–133
Unexploded ordnances
 injuries from, 15–16
 triage considerations, 32
UPAC. See Ohmeda Universal Portable Anesthesia Complete
Upper extremities
 compartment syndrome, 490–491
 vascular injuries, 361–362
Ureteral injuries, 282–285
Ureteroneocystostomy, 284
Ureteroureterostomy, 283
Urethral injuries, 286–288
Urethrography, retrograde, 286–287
Urinary tract injuries. See Genitourinary tract injuries
Urticarial transfusion reactions, 487
US Army Institute of Surgical Research Burn Center, 391
US Department of Defense. See Department of Defense Trauma Registry
Uterine atony, 302–303
Uterine injuries, 293
V
VAC. See Vacuum-Assisted Closure Therapy System
Vacuum-Assisted Closure Therapy System, 494
Vaginal hemorrhage, acute, 297–298
Vaginal injuries, 292–293
Vaporizers, 97–100
Vascular access
 shock and, 84–87
Vascular injuries
 anastomotic disruption, 374
 angiography, 360
anticoagulation, 374
aorta, 367–368
autologous vein harvest and use, 373–374
axillary artery, 361–362
brachial artery, 362
carotid artery, 369–370
cervical vascular injury, 369–371
common femoral artery, 363
diagnosis of, 359–360
endovascular capability, 373
epidemiology of, 357–358
evaluation of, 359–360
facial injuries and, 184–185
Fogarty thrombectomy catheters, 372
hepatic artery, 368
history of, 357
iliac arteries, 369
inferior vena cava filters, 373
jugular vein, 370–371
large veins, 371
ligation of vessels, 371–372
lower extremities, 362–367
management of, 358–359
mesenteric arteries, 369
pediatric, 373
popliteal artery, 364–366
portal vein, 368
postoperative care, 374–375
profunda femoris artery, 363–364
prosthetic graft material use, 373
radial artery, 362
renal arteries, 369
roles of care, 358–359
soft-tissue coverage, 374
subclavian artery, 361
superficial femoral artery, 364
temporary vascular shunts, 372
thoracic, 251–252
tibial artery, 366
torso, 367–369
ulnar artery, 362
upper extremities, 361–362
vena cava, 368
venous injury, 367
vertebral artery, 370

Vecuronium, 91
VEE. See Venezuelan equine encephalitis
Vena cava filters, 373
Vena cava injuries, 368
Venezuelan equine encephalitis, 441
Venous injuries, 367, 371
Venous thromboembolism, 148–149, 152
Ventilation, 62–63, 141. See also Mechanical ventilation
Ventilator-associated pneumonia, 153–154, 172–173
Ventilators, portable, 99–100
Ventricular fibrillation
 hypothermia and, 401–402
Vertebral artery injuries, 196, 370
Vertebral column
 mechanical integrity of, 308–310
Vesicants, 445–446, 448
VHF. See Viral hemorrhagic fever
Vibrio cholerae, 440

Vietnam War
 casualties by weapon type, 2
Viral agents, 441
Viral hemorrhagic fever, 441
Vital signs
 head injuries and, 224
 pediatric, 453
Volutrauma, 142
Vulvar injuries, 291–292

W

Walking Blood Banks, 478–483, 503–512

War wounds. See also specific type of injury
 anatomical distribution of primary penetrating wounds, 2
 antipersonnel landmines, 8–9
 armored vehicle crew casualties, 11–14
 ballistic injuries, 6
 blast injuries, 6, 8
 epidemiology of injuries, 1–2
 explosive injuries, 5, 7
 inhalation injuries, 14
 mechanism of injury, 3–16
 open joint injuries, 101–112
 projectile injuries, 3–4
 small arms injuries, 9–11
 soft-tissue injuries, 101–112
 thermal injuries, 8
 thermobaric injuries, 8
 unexploded ordnances, 15–16

Weapons effects
 antipersonnel landmines, 8–9
armored vehicle crew casualties, 11–14
ballistic injuries, 6, 8
casualties by weapon type, 2
epidemiology of injuries, 1–2
explosive injuries, 5, 7
inhalation injuries, 14
mechanism of injury, 3–16
projectile injuries, 3–4
small arms injuries, 9–11
thermal injuries, 8
thermobaric injuries, 8
unexploded ordnances, 15–16
White phosphorus burns, 389–390
Whole blood, fresh
 ABO matching, 470–471
 emergency collection in the field, 478–483, 503–512
 posttransfusion verification, 510–511
 rapid testing of, 509
 releasing, 509–510
 role of care, 469
WIA. See Wounded in action
World War II
 casualties by weapon type in Bougainville Campaign, 2
Wound Data and Munitions Effectiveness Team, 1
Wounded in action, 522
Wounds. See War wounds; specific injury type
Y
 Yersinia pestis, 440